Städtebauliche Entwicklung Petrisberg, Stadt Trier

Untersuchungen zur Versickerungsfähigkeit des oberflächennahen und tieferen Untergrundes

Auftraggeber: Stadtplanungsamt der Stadt Trier

Am Augustinerhof 54224 Trier

Auftragnehmer: HEYER GMBH

UMWELT- U. GEOTECHNIK

Am Hofgarten 41 54329 KONZ

Projekt-Nr.:	3601	Bericht:	3601	Datum:	31.10.2001
Seiten:	11	Anlagen:	5	Bearbeiter:	Dr. C. Schnatmeyer

Stadtplanungsamt Trier Am Augustinerhof

 54224 Trier
 Datum : 31.10.01

 Projekt : 3601

Zeichen :3601 / Sc

Projekt: Städtebauliche Entwicklung Petrisberg, Stadt Trier

Bericht : Untersuchungen zur Versickerungsfähigkeit des oberflächennahen und tieferen

Untergrundes

INHALTSVERZEICHNIS

1	VORGANG UND AUFGABENSTELLUNG	3
2	PLÄNE / UNTERLAGEN	3
3	UNTERSUCHUNGSGEBIET	4
	3.1 LAGE 3.2 GEOLOGIE	4 4
4	UNTERSUCHUNGEN	4
	 4.1 SCHÜRFE UND RAMMKERNSONDIERUNGEN (RKS) 4.2 VERSICKERUNGSVERSUCHE 4.2.1 Doppelringinfiltrometer 4.2.2 Auffüllversuche 4.3 PROBENNAHMEN 	4 5 5 6 6
5	ERGEBNISSE	7
	5.1 BODENAUFBAU, -GRUPPEN UND -VERBREITUNG5.2 GRUND- UND SCHICHTWASSER5.3 VERSICKERUNGSFÄHIGKEIT	7 7 8
6	ZUSAMMENFASSUNG	10
7	LITERATUR	11

ANLAGENVERZEICHNIS

- 1 Lagepläne
 - 1.1 Übersichtslageplan (M 1 : 20.000)
 - 1.2 Lagepläne der Aufschlußpunkte
 - 1.2.1 Versuchsfläche A
 - 1.2.2 Versuchsfläche B
 - 1.2.3 Versuchsfläche C
- 2 Bodenprofile
- 3 Schichtenverzeichnisse
- 4 Ergebnisse der Versickerungsversuche
 - 4.1 Doppelringinfiltrometer-Versuche
 - 4.2 Auffüllversuche
- 5 Fotodokumentation –digitaler Datenträger- (CD mit 69 Fotos; digitalem Lageplan)

1 VORGANG UND AUFGABENSTELLUNG

Im Rahmen der Planungen zur Städtebaulichen Entwicklung des Petrisberges in Trier sind im Bereich der ehemaligen Kaserne Belvedere Beurteilungen über die Versickerungsfähigkeit der Flächen gefordert.

Mit der Durchführung der notwendigen Untersuchungen wurde die HEYER GMBH UMWELT-UND GEOTECHNIK, Konz durch das Stadtplanungsamt der Stadt Trier beauftragt.

Durch Felduntersuchungen (Rammkernsondierungen, Hand- und Baggerschürfe) wurde der Bodenaufbau im Hinblick auf Art und Ausdehnung erkundet. In verschiedenen Bereichen wurden repräsentative Bodenproben genommen, um bei Bedarf (zur Beurteilung der Bebaubarkeit) die bodenmechanischen Kennwerte bestimmen zu können.

Zur Bestimmung der Versickerungsfähigkeit des oberflächennahen und tieferen Untergrundes (bis max. 5 m) wurden über das gesamte Areal verteilt insgesamt 19 Versickerungsversuche mittels Doppelringinfiltrometer und 13 Versickerungsversuche im Bohrloch (Auffüllversuche) durchgeführt.

Die Lage der Untersuchungspunkte wurde in detaillierter Abstimmung mit Stadtplanungsamt der Stadt Trier (Herr Semler) und dem Planunsbüro Bielefeld und Gillich, Trier (Herr Hirlmeyer) vorgenommen.

Insbesondere erfolgte die Festlegung des Niveaus für die Durchführung der Versickerungsversuche auf der Grundlage der Planung für die vorgesehene Geländeangleichungen (Lageplan U2, Stand 29.09.01).

2 PLÄNE / UNTERLAGEN

Für die Durchführung der Arbeiten standen folgende Pläne und Unterlagen zur Verfügung:

- (U1) Rahmenplan der Stadt Trier zur Städtebaulichen Entwicklungsmaßnahme Petrisberg; digital; als Lageplan M 1:2.500; Lageplan M 1 : 5.000.
- (U2) Skizze. "Vorläufige Endtiefen für Erdbewegungen im Bereich W1 und der Freiflächen im Bereich "Quelle", "Fuge", "Paß" auf dem Petrisberg", M 1 : 1.000. Bielefeld + Gillich, Landschaftsarchitekten; 26.09.01.
- (U3) diverse Pläne über Lage von Versorgungsleitungen (Telefon, Gas, Strom, etc.)
- (U4) Büro für Umweltplanung (1999): "Neubau von Wohnheimen des Studentenwerks Trier auf dem Petrisberg Bereich ehem. franz. Lazarett, Versickerungsuntersuchungen". Endbericht vom 08.07.1999; Mertesdorf.
- (U5) Industrieanlagen –Betriebsgesellschaft mbH (2001): "Konversion Petrisberg, Darstellung der Altlastensituation". Bericht aus 2001 (Auszüge).

3 UNTERSUCHUNGSGEBIET

3.1 LAGE

Das ehemalige französische Militärgelände der Kaserne Belvedere liegt auf dem Petrisberg, ca. 2 km östlich des Stadtzentrums von Trier. Das Untersuchungsgebiet läßt sich in drei Bereiche aufteilen:

- Bereich A: der südwestliche Abschnitt des ehemaligen Kasernengeländes entlang der Sickingerstraße.
- Bereich B: der Hauptbereich des ehemaligen Kasernengeländes entlang der Pluwiger Straße.
- Bereich C: Versuchsflächen außerhalb des Kasernengeländes, in nordöstlicher Richtung im Bereich Behringstraße und Pluwiger Straße, sowie östlich des Geozentrums der Universität Trier.

3.2 GEOLOGIE

Der tiefere Untergrund des gesamten Untersuchungsgebietes wird aus unterdevonischen Tonschiefern aufgebaut. Überlagert wird dieser von den altpleistozänen Sedimenten der unteren Hauptterrasse der Mosel. Diese werden in der Regel mit einer mehrere Meter mächtigen Schicht rotgefärbter, mittelplastischer Schluffe bedeckt, die als Überflutungssedimente und/oder Hanglehme der fluviatilen Ablagerung gedeutet werden können. Im Bereich des Untersuchungsgebietes sind die natürlichen Abfolgen durch Abtragungen und/oder Umlagerungen in weiten Bereichen gestört.

4 UNTERSUCHUNGEN

4.1 SCHÜRFE UND RAMMKERNSONDIERUNGEN (RKS)

Zur Erkundung des Bodenaufbaus und zur Durchführung der Messungen zur Versickerungsfähigkeit wurden insgesamt durchgeführt :

- 10 Rammkernsondierungen
- 9 Baggerschürfe
- 10 Handschürfe

Die Aufnahme der Bodenprofile erfolgte nach DIN 4022 [1] und 18 196 [2]. Zusätzlich wurden Hinweise auf den Vernässungsgrad (hydromorphe Merkmale) der Ablagerungen nach BKA [3] dokumentiert. Die Tiefen der jeweiligen Aufschlüsse richten sich im wesentlichen nach den, vom Auftraggeber vorgegebenen, geplanten Geländehöhen. Die Lage der Aufschlußpunkte und die jeweilige Endteufe sind in den Lageplänen der Anlage 1.2 dargestellt.

Die Rammkernsondierungen wurden mit einem Rammkernbohrgerät (Bohrdurchmesser 40 - 60 mm) niedergebracht. Sie wurden bis maximal 5,0 m unter Gelände abgeteuft. Die Handschürfe wurden zum Freilegen der Grasnarbe bis max. 0,3 m eingerichtet. Die Baggerschürfe wurden bis max. 4,00 m Tiefe durchgeführt. Der Aufbau der Bodenabfolge in den Schürfen (ab 0,5 m Tiefe) und Bohrungen ist den Bodenprofilen in Anlage 2 und den Schichtenverzeichnissen in Anlage 3 zu entnehmen.

4.2 VERSICKERUNGSVERSUCHE

4.2.1 Doppelringinfiltrometer

In den insgesamt 19 Schürfen wurde mit einem Doppelringinfiltrometer die Versickerungsfähigkeit der betroffenen Bodenschichten ermittelt.

Das Doppelring-Infiltrometer ist ein einfaches Gerät zur Bestimmung der Wasserinfiltration in oberflächennahen Böden. Es besteht aus zwei Metallringen mit unterschiedlichen Durchmessern. Zur Bestimmung der Infiltrationsrate wird das Absinken des Wasserstands im inneren Ring in Abhängigkeit von der Zeit bestimmt. Durch den Doppelring wird ein seitliches Versickern des infiltrierenden Wassers eingeschränkt.

Für die Versuche wurden die Ringe nacheinander (zuerst der innere) etwa 5 cm in den Boden getrieben. Danach wurden sie mit Wasser befüllt (ca. 7 bis 10 cm Höhe), wobei das Wasser zuerst in den äußeren und dann in den inneren Ring eingebracht wurde. Um Verschlämmungen der Sohle zu verhindern, wurde das Wasser vorsichtig über einen Schwamm eingelassen.

Während der Versuche wurde der Wasserstand in den beiden Ringen auf annähernd gleicher Höhe gehalten. Somit ist gewährleistet, daß laterales Versickern des Wassers aus dem inneren Ring weitgehend unterbunden ist. Die Versuche wurden solange durchgeführt, bis sich quasi stationäre Verhältnisse einstellten. Aus dem Verhältnis der infiltrierten Wassermenge (Absenkung) gegen die Zeit kann nach einem empirischen Ansatz die Versickerungsleistung Q ermittelt werden [4]:

$$Q = \frac{S}{t}$$
 [m/s] mit s = Absenkung [m], t = Zeit [s]

Der Durchlässigkeitsbeiwert (k_f-Wert), wird aus der für den gesättigten Bodenkörper ermittelten Versickerungsrate abgelesen. In den meisten Fällen handelt es sich hierbei um den Endwert der jeweiligen Versuche. Teilweise können Mittelwerte über die letzten Werte oder auch über den gesamten Versuch gebildet werden.

4.2.2 Auffüllversuche

Mit Hilfe der Auffüllversuche in den Bohrlöchern sollten Erkenntnisse über die Versickerungsfähigkeit der tieferen Bodenschichten (ca. 0,5 bis 5,0 m) gewonnen, und eventuell mit den Ergebnissen aus den Doppelringinfiltrometerversuchen verglichen werden. Insgesamt wurden 13 Auffüllversuche durchgeführt.

Bei den Auffüllversuchen wurde in den Bohrlöchern ausschließlich über die Bohrlochsohle Wasser versickert. Aus den Druckhöhen, den versickerten Wassermengen und den Zeitmessungen kann der k_f -Wert der erschlossenen Bodenschichten errechnet werden.

Bei den Versuchen handelte es sich um Testverfahren mit fallender Druckhöhe. Die Auswertung erfolgt über die Formel für den Open-End-Test [5]

$$kf = \frac{\pi \cdot \Delta H \cdot r \cdot Ct}{5.5 \cdot h \cdot \Delta t} \quad [\text{m/s}]$$

mit

ΔH = versickerte Wassersäule zwischen H1 und H2 [m]

Ct = Korrekturfaktor der Temperatur zur Normierung der kf-Wert auf 20°C

h = mittlere Druckhöhe [m] [(h1+h2) / 2]

 Δt = verstrichen Zeit zwischen H1 und H2 [s]

r = Radius Bohrloch [m]

4.3 PROBENNAHMEN

Zum Zweck bodenmechanischer Laboruntersuchungen wurden aus 17 Aufschlüssen 22 repräsentative Bodenproben (Becherproben, Eimerproben) entnommen. Für drei dieser Proben werden derzeit im Laboratorium für Straßen- und Betonbau, Trier der Wassergehalt, die Korngrößenverteilung und für zwei Proben die Konsistenzgrenzen und die Proctordichte bestimmt.

Die Ergebnisse der Laboruntersuchungen lagen zum Zeitpunkt der Berichterstellung noch nicht vor und werden in einem ergänzenden Bericht dargestellt und erläutert.

5 ERGEBNISSE

5.1 BODENAUFBAU, -GRUPPEN UND -VERBREITUNG

Der in den Aufschlüssen freigelegte Bodenaufbau war mehr oder weniger einheitlich. Prinzipiell konnten drei Einheiten ausgehalten werden:

Oberboden (0,0 bis max. 0,5 m u. GOK)

Die oberste Lage der aufgeschlossenen Bodenprofile wurde in den meisten Fällen von einem rotbraunen bis dunkelbraunen, tonig, schluffig bis sandigen, humosen Oberboden gebildet. Die Mächtigkeit des Oberbodens variierte zwischen 0,0 m (im Bereich von Auffüllungen oder Schwarzdecken) und 0,5 m. In vielen Fällen war diese oberste Schicht wassergesättigt und zeigte eine weiche bis steife Konsistenz.

• Hanglehm (0,1 bis max. 4,5 m u. GOK)

Unter dem Oberboden folgt in der Regel ein roter bis rotbrauner mittelplastischer Schluff, der geologisch den Hanglehmen der fluviatilen Ablagerungen der Hauptterrasse zugeordnet werden kann. Es handelt sich um einen tonig, sandig, schwach kiesigen, teilweise schwach steinigen Schluff, der nach DIN 18 196 der Bodengruppe UM teilweise TM zuzuordnen ist.

Die Konsistenz dieses überwiegend feinkörnigen Bodens war durchweg steif bis halbfest. In den meisten Aufschlüssen wurde diese Einheit nicht vollständig durchteuft. Eine Angabe über die mittlere Mächtigkeit kann daher nicht gemacht werden. Die maximale Mächtigkeit liegt bei ca. 5 m.

• Sande und Kiese der Hauptterrasse

Als dritte lithologische Einheit des Bodenprofils folgen die Sande und Kiese der Hauptterrasse. Angaben zur Mächtigkeit dieser Schichten können nicht gemacht werden. Diese wurden teils in den Aufschlüssen meist in Tiefen ab 3,0 m unter Gelände aufgeschlossen.

Die im Untergrund folgenden, unterdevonischen Tonschiefer sind in keinem Aufschluß erreicht worden.

Die ursprüngliche Bodenabfolge ist jedoch meist antropogen verändert. Insbesondere im Bereich des südwestlichen Kasernengeländes entlang der Sickingerstraße (Bereich A) ist diese natürliche Schichtenabfolge durch umfangreiche Einebnungsmaßnahmen für das Gelände in den 30-iger Jahren verändert. Auch sind große Teile des nördlichen Brettenbachtales (an der Südkante der Fläche 'B') bis zu 5 m verfüllt und das innere Kasernengelände im Niveau angeglichen worden.

5.2 GRUND- UND SCHICHTWASSER

Schicht- bzw. Grundwasser wurde in den Aufschlüssen nicht angetroffen. Teilweise waren die untersuchten Bodenschichten (ausschließlich oberflächennahe) wassergesättigt bis übersättigt. Hydromorphe Merkmale (Eisen-(Mangan-) Flecken, Reduktionsfleckung) konnten allerdings nur vereinzelt beobachtet werden (vgl. Anlage 2).

5.3 VERSICKERUNGSFÄHIGKEIT

Die Versickerungsfähigkeit des Bodens muß zur Erstellung eines Entwässerungskonzepts möglichst genau bestimmt, und über eine Klassifizierung beurteilt werden. Die Leistungsfähigkeit des Bodens zur Niederschlagsversickerung soll nach ATV A 138 [6] für Versickerungsanlagen zwischen $5 \cdot 10^{-3}$ bis $5 \cdot 10^{-6}$ m/s liegen. Nach ZTVE [7] sind für Versickerungsanlagen Durchlässigkeitsbeiwerte von mindestens $k_f = 10^{-4}$ m/s gefordert.

Für die Versickerungsfähigkeit der untersuchten Lockergesteine wird folgende Klassifizierung eingesetzt:

- $kf = 5 \cdot 10^{-3}$ bis $kf = 5 \cdot 10^{-6}$ geeignet nach ATV - $kf \ge 10^{-4}$ geeignet nach ZTVE

Die Durchlässigkeit bzw. das Infiltrationsvermögen der erkundeten Bodenschichten wurde im Gelände mittels Doppelringinfiltrometer- und/oder Auffüllversuch bestimmt. In den Anlagen 4.1 und 4.2 sind die Meßdaten und Auswertungen der Feldversuche enthalten. Tabelle 1 zeigt eine Übersicht über die ermittelten Durchlässigkeitsbeiwerte.

Ein Großteil der im Untersuchungsgebiet angetroffenen Bodenarten sind aufgrund der Feldansprache als schlecht bis sehr schlecht durchlässige Böden zu benennen. Nur in den tieferen Aufschlüssen treten die Kiese und Sande der Terrassenablagerungen auf, die aufgrund der Feldansprache (n. DIN 4022, 18196) als gut durchlässige Böden benannt werden können.

Die Durchlässigkeitsbeiwerte (k_f -Werte) der unterschiedlichen Versuchstandorte schwanken zwischen 10^{-4} und 10^{-9} m/s. Für rund 63 % (20 Aufschlüsse) der untersuchten Standorte ergaben die Infiltrationsversuche kf-Werte < 5· 10^{-6} m/s und sind damit für die Einrichtung von Versickerungsanlagen ungeeignet. 37 % (12 Aufschlüsse) sind nach ATV A 138 [4], und nur 6 % (2 Aufschlüsse) der Standorte sind auch nach ZTVE [5] geeignet.

Aus Tabelle 1 wird deutlich, daß im Bereich des Oberbodens trotz des vorherrschend feinkörnigen Materials relativ häufig kf-Werte ermittelt wurden, die das Anlegen von Versickerungsanlagen ermöglichen würden. Dies ist im Zusammenhang mit den im Oberboden verstärkt vorhandenen Wurzeln, Grabgängen und ähnlichem zu sehen, durch welche die Versickerungsfähigkeit des Bodens beeinflußt wird.

Im Bereich der tieferen Schichten (Hanglehme) wurde nur für den Versuch A8 ein kf-Wert von > $5\cdot10^{-6}$ m/s ermittelt. Hier wurde aber in der Versuchstiefe (1 m) ebenfalls das Vorhandensein von Wurzeln dokumentiert.

Die Versuche, die in den tiefer liegenden Terrassenschottern durchgeführt wurden, ergaben überwiegend kf-Werte > 5·10⁻⁶ m/s. Diese Ergebnisse werden durch die über die Gesteinsansprache ermittelten Bodengruppen bestätigt.

Tabelle 1: Durch Feldversuche ermittelte Durchlässigkeitsbeiwerte (gerundete Werte)

Sondier- stelle	Bestimmungs- methode	Bodengruppen	Tiefe [m]	k _f -Wert [m/s]	geeignet n. ZTVE	geeignet n. ATV						
Oberboden, durchwurzelte Bereiche												
A1	Doppelringinf.	UL – UM/SU	0,5	≈ 3 x 10 ⁻⁶								
A2	Doppelringinf.	UM	0,1	≈ 1 x 10 ⁻⁶								
A3	Doppelringinf.	UL/UM	0,1	≈ 2 x 10 ⁻⁵								
A5	Doppelringinf	UM/TM	0,1	≈ 2 x 10 ⁻⁸								
B1	Doppelringinf	UM/TM	0,1	< 10 ⁻⁷								
B2	Doppelringinf	[UM]	0,4	≈ 5 x 10 ⁻⁵								
B11	Doppelringinf	SU/UL	0,1	≈ 1 x 10 ⁻⁵								
B12	Doppelringinf	UL/TL	0,1	≈ 3 x 10 ⁻⁶								
B13	Doppelringinf	OH/UL	0,1	≈ 2 x 10 ⁻⁵								
C1	Doppelringinf	UM	0,1	≈ 1 x 10 ⁻⁶								
C3	Doppelringinf	UL/TL	0,2	≈ 2 x 10 ⁻⁶								
C4	Doppelringinf	UM	0,1	≈ 7 x 10 ⁻⁵								
Hanglehme												
A4	Auffüllvers./Bohrl.	UM	1,0	≈ 3 x 10 ⁻⁹								
A6	Doppelringinf	UM/TM	1,2	≈ 3 x 10 ⁻⁷								
A7	Doppelringinf	UM	0,7	≈ 1 x 10 ⁻⁷								
A8	Auffüllvers./Bohrl.	GT	4,0	≈ 1 x 10 ⁻⁶								
A9	Doppelringinf	[UM/TM]	1,0	≈ 7 x 10 ⁻⁶								
A10	Doppelringinf	UM/TM	0,7	≈ 2 x 10 ⁻⁷								
В3	Auffüllvers./Bohrl.	SU	1,0	≈ 5 x 10 ⁻⁹								
B8	Auffüllvers./Bohrl.	[UM]	1,0	< 10 ⁻⁹								
B14	Doppelringinf	UM	2	≈ 6 x 10 ⁻⁷								
B15	Doppelringinf	[UM/TM]	2	≈ 8 x 10 ⁻⁷								
C2	Auffüllvers./Bohrl.	UM	1,0	≈ 1 x 10 ⁻⁹								
Terrassenscho	otter											
A4	Auffüllvers./Bohrl.	GW/GU	3,6	≈ 7 x 10 ⁻⁷								
B4	Auffüllvers./Bohrl.	GW	1,6	≈ 1 x 10 ⁻⁶								
B5	Auffüllvers./Bohrl.	SW	2,0	≈ 2 x 10 ⁻⁵								
В6	Auffüllvers./Bohrl.	SU	1,4	≈ 1 x 10 ⁻⁷								
В7	Auffüllvers./Bohrl.	GW	5,0	≈ 6 x 10 ⁻⁵								
В9	Doppelringinf	GW/GU	1,7	≈ 1 x 10 ⁻⁴								
B10	Auffüllvers./Bohrl.	SW	5,0	≈ 2 x 10 ⁻⁵								
B14	Auffüllvers./Bohrl.	SW	4	≈ 8 x 10 ⁻⁶								
B15	Auffüllvers./Bohrl.	SW	4	≈ 6 x 10 ⁻³								
					2 Stck.	12 Stck.						

6 ZUSAMMENFASSUNG

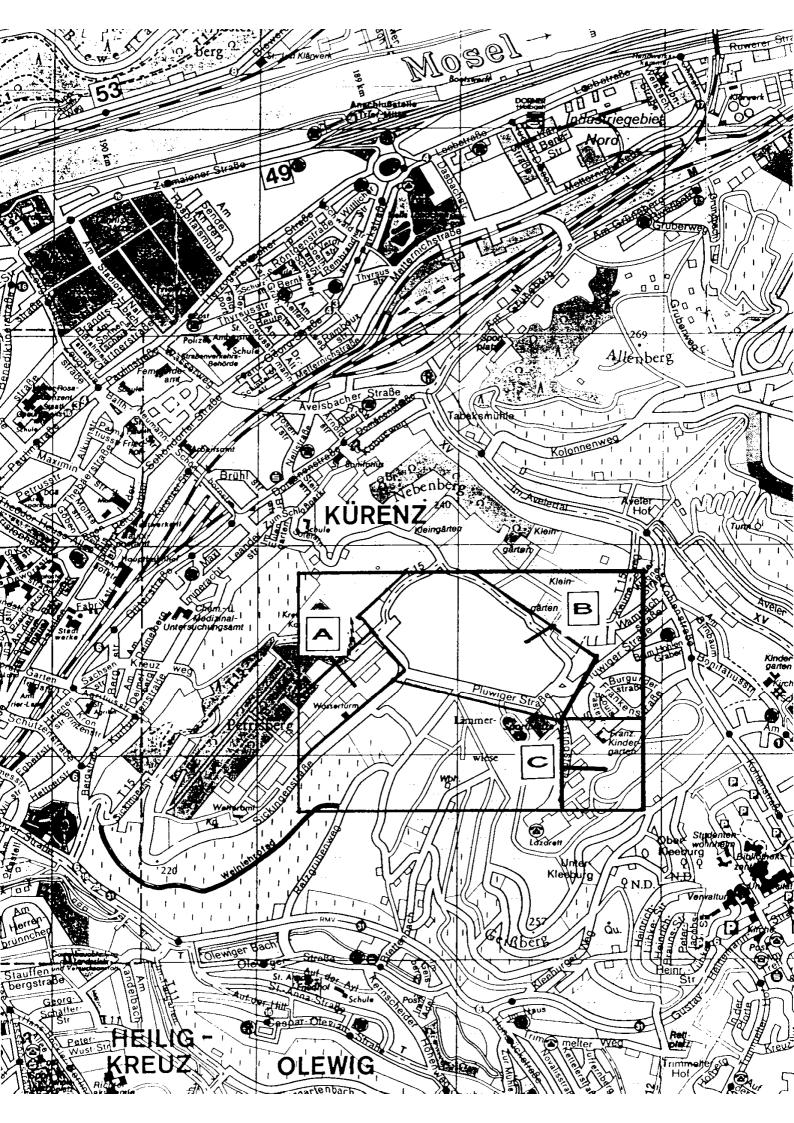
Ein Großteil der im Untersuchungsgebiet angetroffenen Bodenarten sind aufgrund der Feldansprache als schlecht bis sehr schlecht durchlässige Böden zu benennen. Nur in den tieferen Aufschlüssen treten die Terrassenablagerungen auf, die aufgrund der Feldansprache als gut durchlässige Lockergesteine bezeichnet werden können.

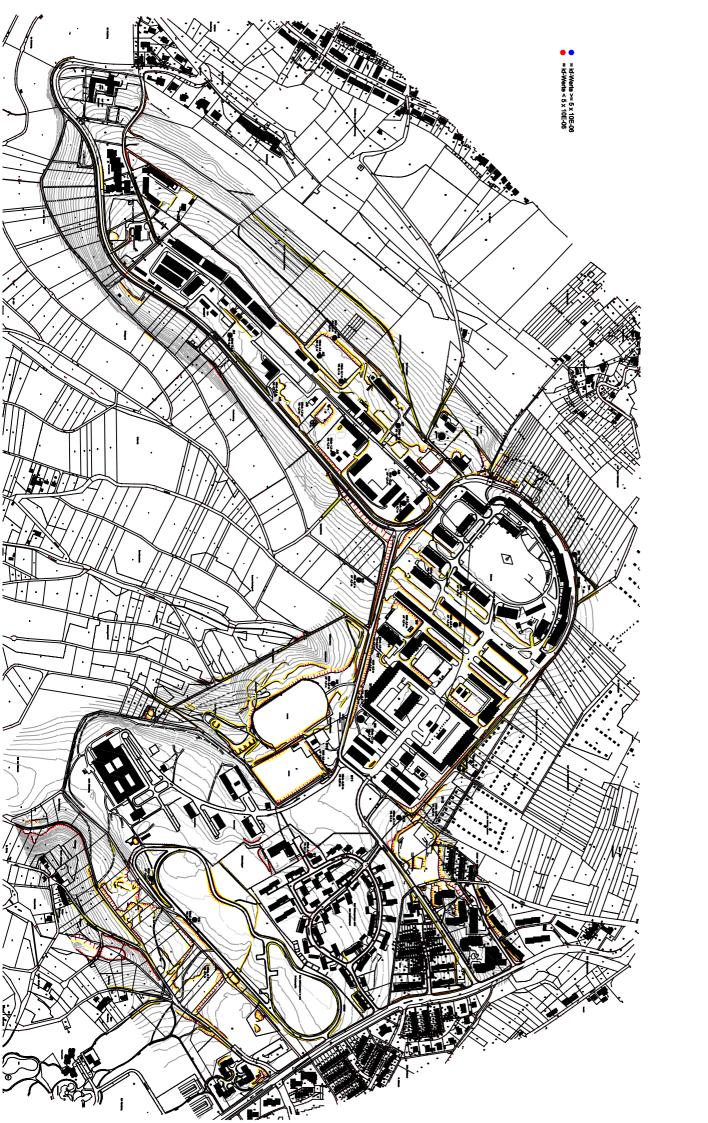
Zur experimentellen Bestimmung der Versickerungsfähigkeit des Untergrundes wurden insgesamt 32 Versickerungsversuche durchgeführt. Im wesentlichen wurden die durch die Feldansprache benannten Durchlässigkeiten dabei bestätigt. Für die oberflächennahen, durchwurzelten Bodenschichten ergaben sich Durchlässigkeitsbeiwerte (kf) zwischen 10⁻⁵ und 10⁻⁷ m/s. Die darunter folgenden wenig bis gar nicht durchwurzelten Hanglehme zeigen Durchlässigkeiten zwischen 10⁻⁶ und 10⁻⁹ m/s. Die kf-Werte der Sande und Kiese der Terrassenablagerungen liegen zwischen 10⁻⁴ und 10⁻⁷ m/s (Tab.1).

Die Versickerung von Oberflächenwasser auf dem vorgesehenen Areal ist im Bereich der bestehenden Geländeoberkante (Verbreitung der Hanglehme) nur sehr eingeschränkt möglich bzw. nicht möglich.

Die im Untergrund folgenden Sande und Kiese sind nach den vorliegenden Versuchsergebnissen für die Anlage von Versickerungsanlagen geeignet. Folgende Überlegungen sollten aber gesondert beachtet und gegebenenfalls durch eine detaillierte Untersuchung überprüft werden:

- Die Terrassenablagerungen im Bereich des ehemaligen Kasernengeländes sind nach vorliegenden Literaturangaben (geologische Kartierungen, Kartenwerke und Erläuterungen) nur wenige Meter mächtig. Damit steht wahrscheinlich kein ausreichendes Porenvolumen zur Verfügung um große Mengen an versickerndem Wasser aufzunehmen.
- Unter den Terrassenablagerungen folgen Tonschiefer, die als schlecht durchlässig zu bezeichnen sind. Das an der Oberfläche versickerte Wasser trifft also im Untergrund erneut auf einen Grundwasserstauer. Die Einleitung größerer Wassermengen in dieses Schotterpaket kann zu diffusen Wasseraustritten im Bereich des Übergangs Terrassenschotter/Tonschiefer führen. Zudem kann eine Übernässung von einzelnen, gering mächtigen Schichten zu einer erhöhten Rutschungsgefährdung in Teilbereichen führen.


HEYER GmbH UMWELT-U. GEOTECHNIK

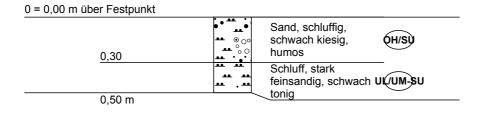

bearbeitet:

Hermann- J. Heyer (Dipl.-Geol.) BERATENDER GEOLOGE BDG Dr. Christine Schnatmeyer (Dipl.-Geol.)

7 LITERATUR

- [1] DIN 4022 TI.1 (1987): Benennen und Beschreiben von Boden und Fels; Schichtenverzeichnis für Bohrungen ohne durchgehende Gewinnung von gekernten Proben im Boden und Fels.- Berlin.
- [2] DIN 18 196 (1983): Erd- und Grundbau; Bodenklassifikation für bautechnische Zwecke.- Berlin.
- [3] AD-HOC-AG BODENKUNDE (1994): Bodenkundliche Kartieranleitung.- 4. Aufl.; Hannover.
- [4] BUNDESVERBAND BODEN (1999): Regenwasserversickerung und Bodenschutz.-Band 2; Berlin.
- [5] WIEDERSPAHN, M. (1997): Versickerung von Niederschlagswasser aus geowissenschaftlicher Sicht.- Schriftenreihe des BDG, Heft Nr. 15; Bonn.
- [6] ATV-Arbeitsblatt A 138 (1992): Bau und Bemessung zur dezentralen Versickerung von nichtschädlich verunreinigten Niederschlagswasser.- Hennef.
- [7] FLOSS, R. (1997): ZTVE-StB 94, Fassung 1997.- Kirschbaum Verlag; Bonn.

Zeichnerische Darstellung von Bohrprofilen nach DIN 4023


Anlage: 2
Projekt: Versickerung, Petrisberg

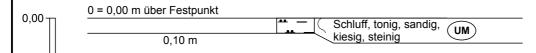
Bearb.: Le

Datum: 31.10.2001

A1-BSCH

Höhenmaßstab 1:25

Zeichnerische Darstellung von Bohrprofilen nach DIN 4023


Anlage: 2

Projekt: Versickerung, Petrisberg

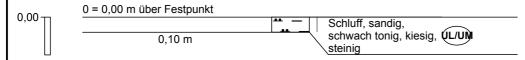
Bearb.: Le

Datum: 31.10.2001

A2-HSCH

Höhenmaßstab 1:25

Zeichnerische Darstellung von Bohrprofilen nach DIN 4023


Anlage: 2

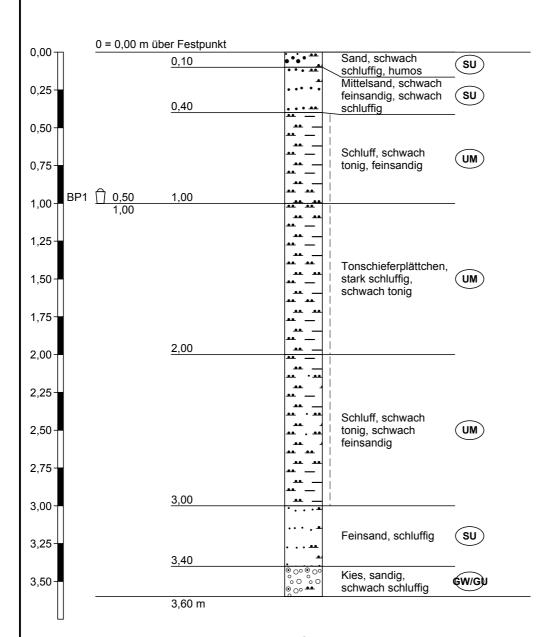
Projekt: Versickerung, Petrisberg

Bearb.: Le

Datum: 31.10.2001

A3-HSCH

Höhenmaßstab 1:25



Anlage: 2
Projekt: Versickerung, Petrisberg

Bearb.: Le

Datum: 31.10.200

A4-RKS

Höhenmaßstab 1:25

Endteufe bei 3,6 m u. GOK. Schluckversuch bei 3,6 m.

Zeichnerische Darstellung von Bohrprofilen nach DIN 4023

Anlage: 2

Projekt: Versickerung, Petrisberg

Bearb.: Le

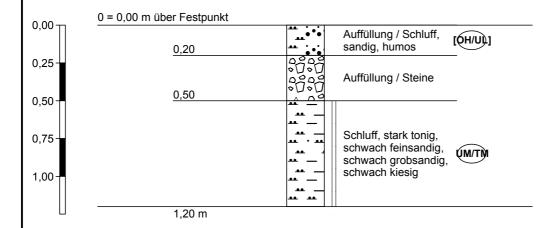
Datum: 31.10.2001

A5-HSCH

0,00

Höhenmaßstab 1:25

Zeichnerische Darstellung von Bohrprofilen nach DIN 4023


Anlage: 2

Projekt: Versickerung, Petrisberg

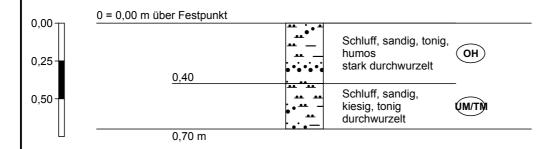
Bearb.: Le

Datum: 31.10.2001

A6-BSCH

Höhenmaßstab 1:25

Zeichnerische Darstellung von Bohrprofilen nach DIN 4023


Anlage: 2

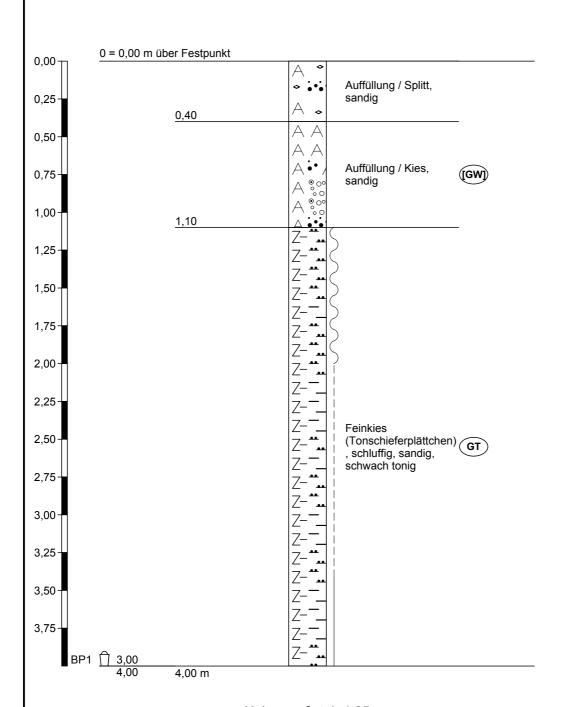
Projekt: Versickerung, Petrisberg


Bearb.: Le

Datum: 31.10.2001

A7-BSCH

Höhenmaßstab 1:25



Anlage: 2

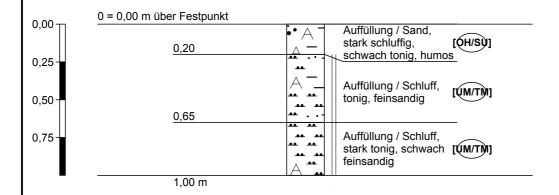
Projekt: Versickerung, Petrisberg Bearb.: Le

Datum: 31.10.2007

A8-RKS

Höhenmaßstab 1:25

Endteufe bei 4,0 m.


Zeichnerische Darstellung von Bohrprofilen nach DIN 4023

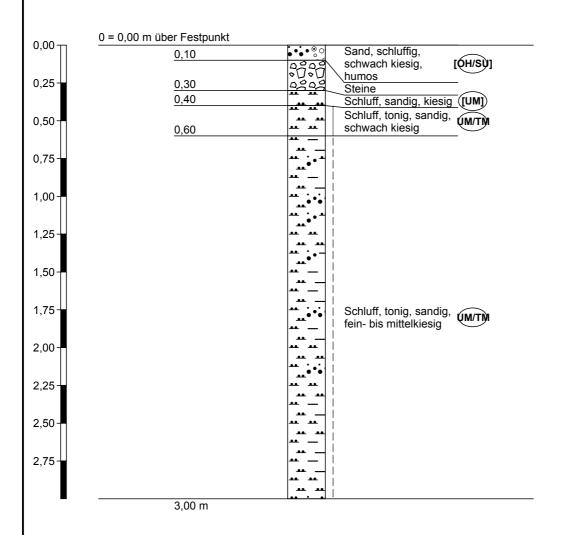
Anlage: 2
Projekt: Versickerung, Petrisberg


Datum: 31.10.2001

Bearb.: Le

A9-BSCH

Höhenmaßstab 1:25


Anlage: 2

Projekt: Versickerung, Petrisberg

Datum: 31.10.200

Bearb.: Le

A10-BSCH

Höhenmaßstab 1:25

Zeichnerische Darstellung von Bohrprofilen nach DIN 4023

Anlage: 2

Projekt: Versickerung, Petrisberg

Bearb.: Le

Datum: 31.10.2001

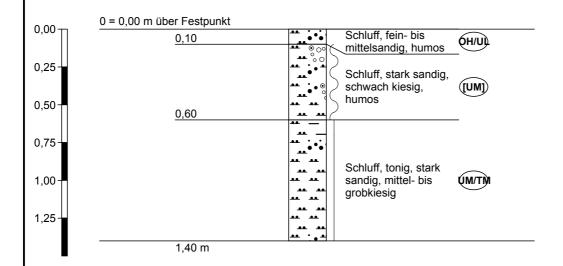
B1-HSCH

 $0.00 \frac{0 = 0.00 \text{ m über Festpunkt}}{0.10 \text{ m}}$

Schluff, sandig, tonig, schwach humos

Höhenmaßstab 1:25

Zeichnerische Darstellung von Bohrprofilen nach DIN 4023


Anlage: 2

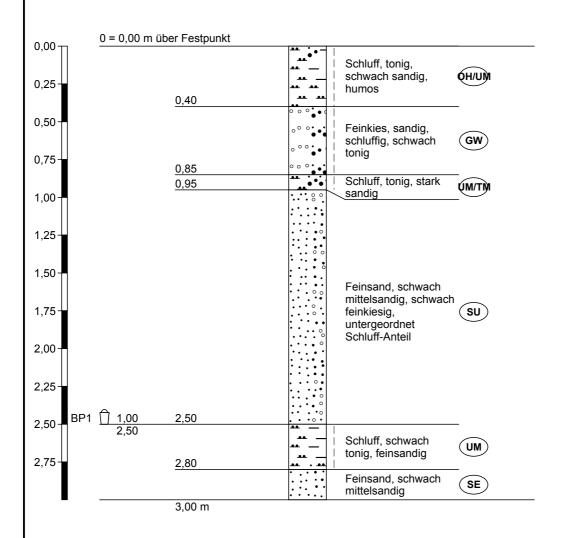
Projekt: Versickerung, Petrisberg

Datum: 31.10.2007

Bearb.: Le

B2-BSCH

Höhenmaßstab 1:25



Anlage: 2
Projekt: Versickerung, Petrisberg

Bearb.: Le

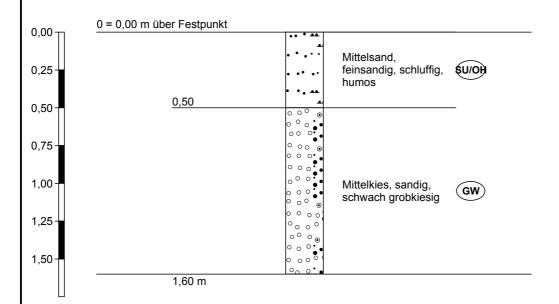
Datum: 31.10.2001

B3-RKS

Höhenmaßstab 1:25

Endteufe bei 3,0 m u. GOK. Schluckversuch in 1,0 m Tiefe.

Zeichnerische Darstellung von Bohrprofilen nach DIN 4023


Anlage: 2

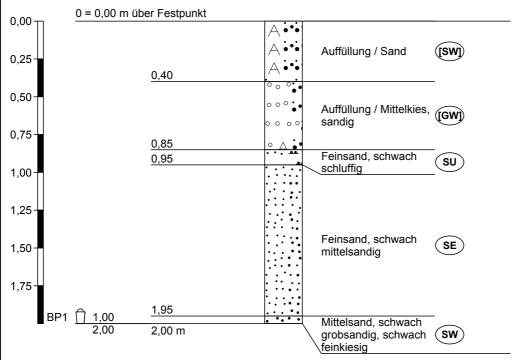
Projekt: Versickerung, Petrisberg

Bearb.: Le

Datum: 31.10.2001

B4-RKS

Endteufe bei 1,6 m u. GOK. Höhenmaßstab 1:25



Anlage: 2

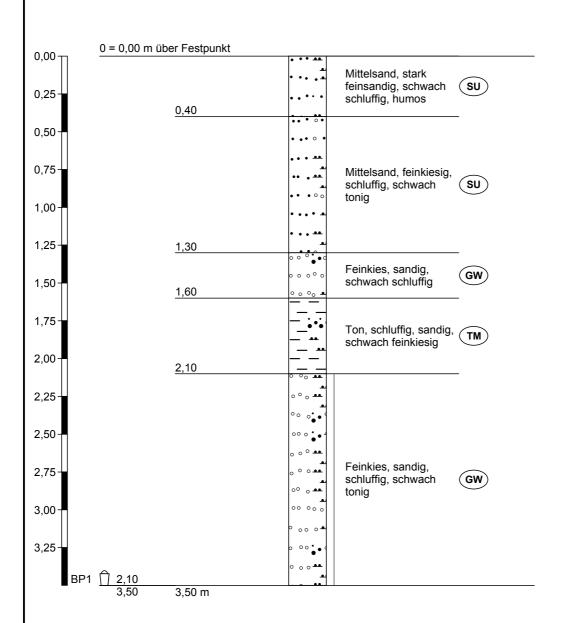
Projekt: Versickerung, Petrisberg

Bearb.: Le Datum: 31.10.200

B5-RKS

Höhenmaßstab 1:25

Endteufe bei 2,0 m u.GOK. Schluckversuch bei 2,0 m.



Anlage: 2
Projekt: Versickerung, Petrisberg

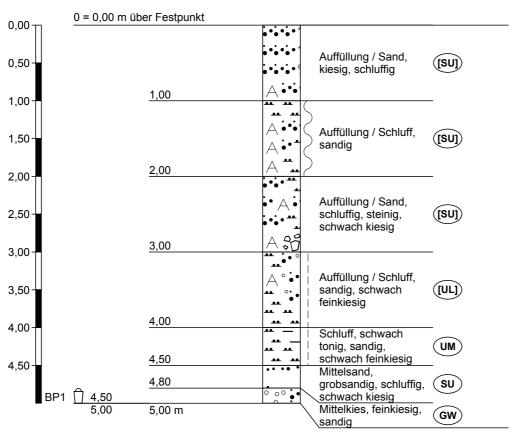
Bearb.: Le

Datum: 31.10.200

B6-RKS

Höhenmaßstab 1:25

Endteufe bei 3,5 m u.GOK. Schluckversuch bei 1,40 m.



Anlage: 2
Projekt: Versickerung, Petrisberg

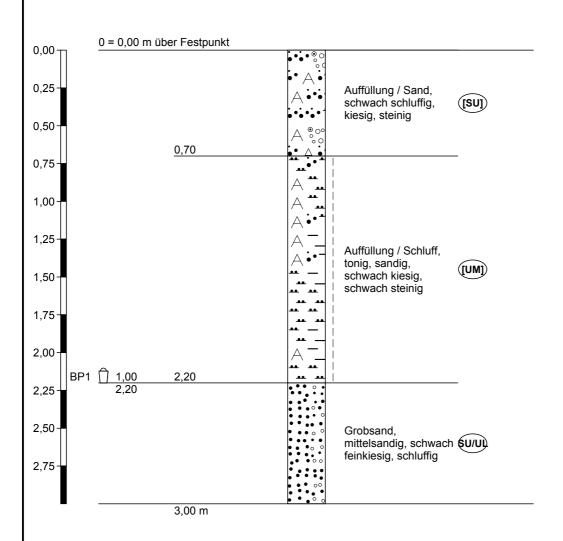
Bearb.: Le

Datum: 31.10.200

B7-RKS

Höhenmaßstab 1:50

Endteufe bei 5,0 m u.GOK. Schluckversuch bei 5,0 m.


Anlage: 2

Projekt: Versickerung, Petrisberg

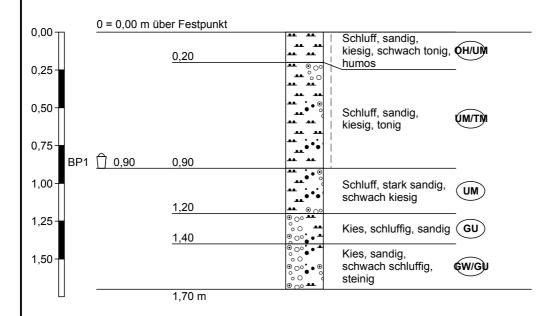
Bearb.: Le

Datum: 31.10.2001

B8-RKS

Höhenmaßstab 1:25

Endteufe bei 3,0 m u.GOK.



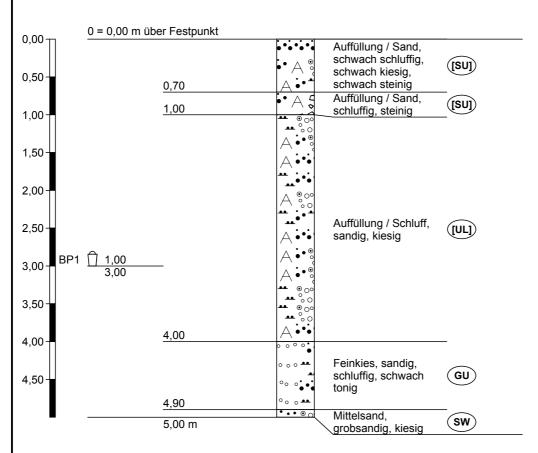
Anlage: 2
Projekt: Versickerung, Petrisberg

Datum: 31.10.200

Bearb.: Le

B9-BSCH

Höhenmaßstab 1:25



Anlage: 2
Projekt: Versickerung, Petrisberg

Datum: 31.10.200

Bearb.: Le

B10-RKS

Höhenmaßstab 1:50

Endteufe bei 5,0 m u.GOK. Schluckversuch bei 5 m.

Zeichnerische Darstellung von Bohrprofilen nach DIN 4023

Anlage: 2

Projekt: Versickerung, Petrisberg

Bearb.: Le

Datum: 31.10.2001

B11-HSCH

0,00 0,00 m über Festpunkt

0,05 m

Fein- bis Mittelsand, stark schluffig, schwach tonig, fein-bis mittelkiesig

Höhenmaßstab

1:25

Zeichnerische Darstellung von Bohrprofilen nach DIN 4023

Anlage: 2

Projekt: Versickerung, Petrisberg

Bearb.: Le

Datum: 31.10.2001

B12-HSCH

0,00 UL/TL

0 = 0,00 m über Festpunkt

0,10 m

Schluff, stark sandig, schwach kiesig, schwach tonig, humos

Höhenmaßstab 1:25

Heyer GmbH Umwelt- u. Geotechnik Am Hofgarten 41 54329 Konz

Zeichnerische Darstellung von Bohrprofilen nach DIN 4023

Anlage: 2

Projekt: Versickerung, Petrisberg

Bearb.: Le

Datum: 31.10.2001

B13-HSCH

0,00 Use Testpunkt

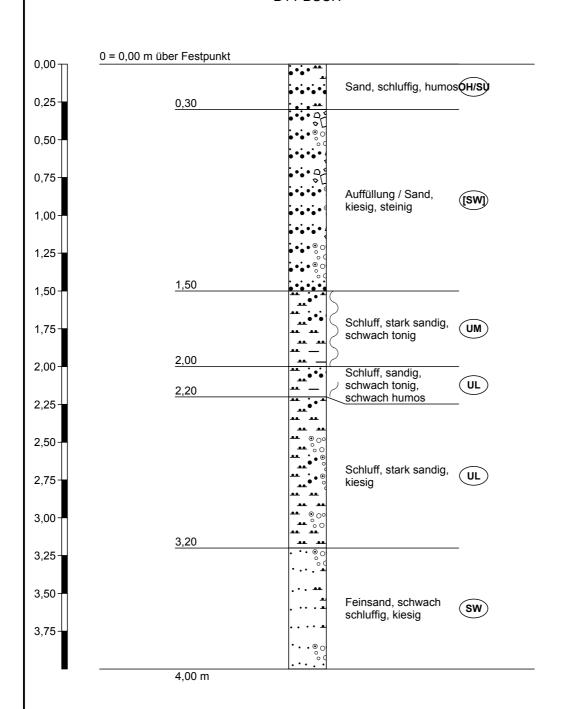
0 = 0,00 m über Festpunkt

0,05 m

Schluff, fein- bis mittelsandig, humos

OH/UL

Höhenmaßstab 1:25


Zeichnerische Darstellung von Bohrprofilen nach DIN 4023

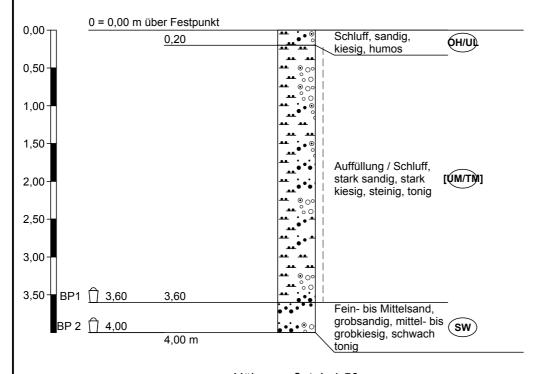
Anlage: 2
Projekt: Versickerung, Petrisberg

Datum: 31.10.200

Bearb.: Le

B14-BSCH

Höhenmaßstab 1:25


Zeichnerische Darstellung von Bohrprofilen nach DIN 4023

Anlage: 2
Projekt: Versickerung, Petrisberg

Datum: 31.10.200

Bearb.: Le

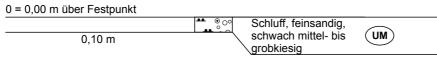
B15 - BSCH

Höhenmaßstab 1:50

Heyer GmbH Umwelt- u. Geotechnik Am Hofgarten 41 54329 Konz

Zeichnerische Darstellung von Bohrprofilen nach DIN 4023

Anlage: 2


Projekt: Versickerung, Petrisberg

Bearb.: Le

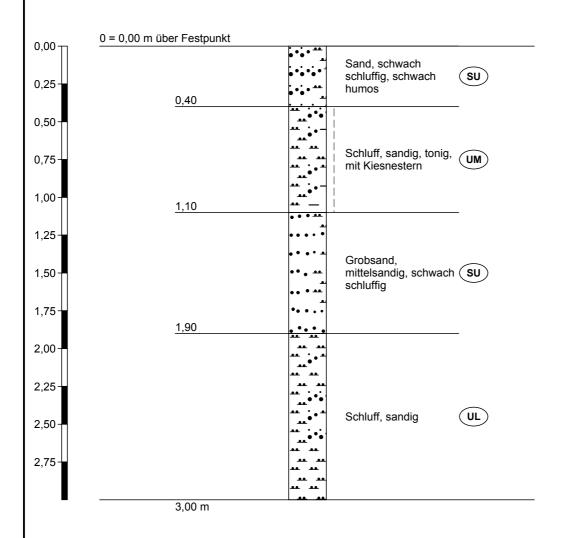

Datum: 31.10.2001

C1 - HSCH

0,00

Höhenmaßstab 1:25

Zeichnerische Darstellung von Bohrprofilen nach DIN 4023


Anlage: 2

Projekt: Versickerung, Petrisberg

Bearb.: Le

Datum: 31.10.2001

C2 - RKS

Höhenmaßstab 1:25

Endteufe bei 3,0 m u.GOK. Schluckversuch bei 1,0 m.

Heyer GmbH Umwelt- u. Geotechnik Am Hofgarten 41 54329 Konz

Zeichnerische Darstellung von Bohrprofilen nach DIN 4023

Anlage: 2

Projekt: Versickerung, Petrisberg

Bearb.: Le

Datum: 31.10.2001

C3 - HSCH

0,00

0 = 0,00 m über Festpunkt

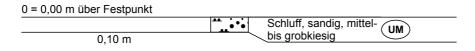
Schluff, fein- bis mittelsandig, schwach feinkiesig, schwach tonig, schwach humos

Höhenmaßstab 1:25

Heyer GmbH Umwelt- u. Geotechnik Am Hofgarten 41 54329 Konz

Zeichnerische Darstellung von Bohrprofilen nach DIN 4023

Anlage: 2


Projekt: Versickerung, Petrisberg

Bearb.: Le

Datum: 31.10.2001

C4 - HSCH

0,00

Höhenmaßstab 1:25

Anlage 3 Schichtenverzeichnis Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: Bohrung Nr A1-BSCH /Blatt 1 31.10.2001 2 3 5 1 Entnommene Proben a) Benennung der Bodenart und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe m Bohrwerkzeuge in m Nr. unter c) Beschaffenheit d) Beschaffenheit e) Farbe Art (Unter-Kernverlust Ansatznach Bohrgut nach Bohrvorgang Sonstiges kante) punkt i) Kalk-Übliche g) Geologische 1) h) 1) Gruppe Benennung Benennung gehalt Sand, schluffig, schwach kiesig, humos Waldboden 0,30 e) dunkelbraun h) OH/ f) g) Oberboden SU a) Schluff, stark feinsandig, schwach tonig b) 0,50 e) ocker/braun d) h) UL/ f) Lößlehm i) g) UMb) d) c) e) i) f) g) h) a) b) c) d) e) f) g) h) i) a) b) d) c) e) h) i) g) 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage 3 Schichtenverzeichnis Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: **Bohrung** Nr A2-HSCH /Blatt 1 31.10.2001 2 3 5 1 Entnommene Proben a) Benennung der Bodenart und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe m Bohrwerkzeuge in m c) Beschaffenheit d) Beschaffenheit e) Farbe unter Art Nr. Kernverlust (Unter-Ansatznach Bohrgut nach Bohrvorgang Sonstiges kante) punkt i) Kalk-Übliche g) Geologische 1) h) 1) Benennung Benennung Gruppe gehalt Schluff, tonig, sandig, kiesig, steinig b) 0,10 gesättigt c) weich e) rot/braun d) h) UM g) i) a) b) c) d) e) i) f) h) g) a) b) d) c) e) f) i) g) h) a) b) c) d) e) f) g) h) i) a) b) d) c) e) f) h) i) g) 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage 3 Schichtenverzeichnis Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: **Bohrung** Nr A3-HSCH /Blatt 1 31.10.2001 2 3 5 1 a) Benennung der Bodenart und Beimengungen Entnommene Proben Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe m Bohrwerkzeuge in m unter c) Beschaffenheit d) Beschaffenheit e) Farbe Art Nr. Kernverlust (Unternach Bohrgut nach Bohrvorgang Ansatz-Sonstiges kante) punkt h) 1) i) Kalk-Übliche g) Geologische 1) Benennung Benennung gehalt Schluff, sandig, schwach tonig, kiesig, steinig b) 0,10 durchwurzelt e) braun c) halbfest d) h) UL/ g) UM a) b) c) d) e) i) f) h) g) a) b) d) c) e) i) f) g) h) a) b) c) d) e) f) g) h) i) a) b) d) c) e) f) h) i) g) 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage 3 Schichtenverzeichnis Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: Bohrung Nr A4-RKS /Blatt 1 31.10.2001 2 3 1 5 a) Benennung der Bodenart Entnommene Proben und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Tiefe Wasserführung . . . m Bohrwerkzeuge in m c) Beschaffenheit d) Beschaffenheit e) Farbe unter Art Nr. Kernverlust (Unter-Ansatz nach Bohrgut nach Bohrvorgang Sonstiges kante) punkt Übliche g) Geologische 1) h) 1) i) Kalkgehalt Benennung Benennung Gruppe Sand, schwach schluffig, humos 0,10 d) leicht zu bohren c) locker e) dunkelbraun h) SU g) Quartär a) Mittelsand, schwach feinsandig, schwach schluffig b) 0,40 c) d) leicht zu bohren e) braun f) h) SU i) g) Quartär a) Schluff, schwach tonig, feinsandig BP 1,00 auf Trocknungsriss b) Tonschieferplättchen, vereinzelt Quarzkies en und 1,00 lokal in d) schwer zu c) steif Nestform bohren Mn-Ausscheidu h) UM g) Quartär ngen Hanglehm ^{a)} Tonschieferplättchen, stark schluffig, schwach tonig b) 2,00 c) steif d) schwer zu e) braun bohren g) Quartär h) UM Hanglehm a) Schluff, schwach tonig, schwach feinsandig 3,00 d) leicht zu bohren e) gelb-hellbrau steif h) UM g) Quartär Lößlehm 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Schichtenverzeichnis

Anlage 3

Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: Bohrung Nr A4-RKS /Blatt 2 31.10.2001 2 3 5 1 Entnommene Proben a) Benennung der Bodenart und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe m Bohrwerkzeuge in m Nr. unter c) Beschaffenheit d) Beschaffenheit e) Farbe Art Kernverlust (Unternach Bohrgut nach Bohrvorgang Ansatz-Sonstiges kante) punkt Übliche g) Geologische 1) h) 1) i) Kalk-Benennung Benennung Gruppe gehalt Feinsand, schluffig b) 3,40 d) leicht zu bohren e) hellbraun c) h) SU f) ^{g)} Quartär i) a) Kies, sandig, schwach schluffig Quarz 3,60 e) rötlich, c) dicht d) schwer zu bohren braungrau h) GW/ i) f) Hauptterrasse g) Quartär GU a) b) d) c) e) i) f) g) h) a) b) c) d) e) f) g) h) i) a) b) d) c) e) h) i) g) 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage 3 Schichtenverzeichnis Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: **Bohrung** Nr A5-HSCH /Blatt 1 31.10.2001 2 3 5 6 1 a) Benennung der Bodenart und Beimengungen Entnommene Proben Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe m Bohrwerkzeuge in m unter c) Beschaffenheit d) Beschaffenheit e) Farbe Art Nr. Kernverlust (Unternach Bohrgut nach Bohrvorgang Ansatz Sonstiges kante) punkt i) Kalk-Übliche g) Geologische 1) h) 1) Benennung Benennung Gruppe gehalt Schluff, tonig, sandig, kiesig, steinig b) deutlich 0,10 übernässter e) rot c) weich d) Boden h) UM/ g) TM a) b) c) d) e) i) f) h) g) a) b) d) c) e) i) f) g) h) a) b) c) d) e) f) g) h) i) a) b) d) c) e) f) h) i) g) 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage 3 Schichtenverzeichnis Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: **Bohrung** Nr A6-BSCH /Blatt 1 31.10.2001 2 3 1 5 a) Benennung der Bodenart Entnommene Proben Bemerkungen und Beimengungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe m Bohrwerkzeuge in m c) Beschaffenheit d) Beschaffenheit e) Farbe unter Art Nr. Kernverlust (Unter-Ansatznach Bohrgut nach Bohrvorgang Sonstiges kante) punkt Übliche g) Geologische 1) h) 1) i) Kalk-Benennung Benennung Gruppe gehalt Auffüllung / Schluff, sandig, humos b) 0,20 e) schwarz-brau h) [OH f) g) Auffüllung /UL] Auffüllung / Steine Packlage, Sandsteinpackung 0,50 e) gelb d) c) f) h) i) g) Auffüllung a) Schluff, stark tonig, schwach feinsandig, schwach grobsandig, schwach kiesig b) kl. Kohlestückchen, Schieferplättchen (gs-fg), Ausbleichungshorizont; teilw. ockerner Farbüberzug; 1,20 c) schwach durchwurzelt e) rot h) UM/ i) f) TM a) b) c) d) e) f) g) h) i) a) b) c) d) e) f) h) i) g) 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage 3 Schichtenverzeichnis Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: Bohrung Nr A7-BSCH /Blatt 1 31.10.2001 2 3 5 1 Entnommene Proben a) Benennung der Bodenart und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe m Bohrwerkzeuge in m Nr. unter c) Beschaffenheit d) Beschaffenheit e) Farbe Art (Unter-Kernverlust nach Bohrvorgang Ansatznach Bohrgut Sonstiges kante) punkt i) Kalk-Übliche g) Geologische 1) h) 1) Benennung Benennung Gruppe gehalt Schluff, sandig, tonig, humos stark durchwurzelt stark 0,40 durchwurzelt e) dunkelbraun g) Oberboden h) OH f) i) Schluff, sandig, kiesig, tonig durchwurzelt 0,70 e) rot/braun d) h) UM/ f) g) TM a) b) c) d) e) f) i) g) h) a) b) c) d) e) f) g) h) i) a) b) d) c) e) h) i) g) 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage 3 Schichtenverzeichnis Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: Bohrung Nr A8-RKS /Blatt 1 31.10.2001 2 3 1 5 a) Benennung der Bodenart Entnommene Proben und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe . . . m Bohrwerkzeuge in m unter c) Beschaffenheit d) Beschaffenheit e) Farbe Nr. Art Kernverlust (Unternach Bohrvorgang Ansatznach Bohrgut Sonstiges kante) punkt i) Kalk-Übliche g) Geologische 1) h) 1) Benennung Benennung Gruppe gehalt Auffüllung / Splitt, sandig b) 0,40 d) schwer zu e) grau-dunkelg bohren rau f) g) Auffüllung h) i) Auffüllung / Kies, sandig Basis schwach schluffig ab 0,9 m 1,10 feucht d) schwer zu c) ab 1,0 m nass graubraun bohren h) [GW i) f) g) Auffüllung BP a) Feinkies (Tonschieferplättchen), schluffig, sandig, 4,00 schwach tonig bis 2,0 m b) weich von 2,0 - 3,4 m 4,00 weich-steif d) leicht - schwer e) rötlich c) zu bohren braungrau ab 3,4 m steif-halbfest h) GT ^{g)} Quartär Hanglehm a) b) c) d) e) f) g) h) i) a) b) c) d) e) h) i) g) 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage 3 Schichtenverzeichnis Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: Bohrung Nr A9-BSCH /Blatt 1 31.10.2001 2 3 1 5 a) Benennung der Bodenart Entnommene Proben und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe . . . m Bohrwerkzeuge in m unter c) Beschaffenheit d) Beschaffenheit e) Farbe Art Nr. Kernverlust (Unter-Ansatznach Bohrgut nach Bohrvorgang Sonstiges kante) punkt h) 1) Übliche g) Geologische 1) i) Kalk-Benennung Benennung Auffüllung / Sand, stark schluffig, schwach tonig, humos b) 0,20 e) dunkelbraun/ graubraun h) [OH | i) f) g) Oberboden /SU] a) Auffüllung / Schluff, tonig, feinsandig Schlackebruchstücke, Kohlereste 0.65 e) rötlichbraun c) fest h) [UM | i) f) g) Auffüllung /TM] a) Auffüllung / Schluff, stark tonig, schwach feinsandig b) Schlackebruchstücke, Kohlereste 1,00 c) fest e) rötlichbraun h) [UM | i) g) Auffüllung /TM] b) c) d) e) f) g) i) a) b) c) d) e) h) i) 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage 3 Schichtenverzeichnis Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: Bohrung Nr A10-BSCH /Blatt 1 31.10.2001 2 3 1 5 a) Benennung der Bodenart Entnommene Proben und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe . . . m Bohrwerkzeuge in m Art unter c) Beschaffenheit d) Beschaffenheit e) Farbe Nr. Kernverlust (Unter-Ansatznach Bohrgut nach Bohrvorgang Sonstiges kante) punkt g) Geologische 1) Übliche h) 1) i) Kalk-Gruppe Benennung Benennung gehalt Sand, schluffig, schwach kiesig, humos b) 0,10 e) dunkelbraun d) h) [OH f) g) /SU] Steine Schotterpaket; Packlage aus Schiefer und Sandstein 0,30 c) d) e) i) f) g) h) Schluff, sandig, kiesig b) schwarze Aschelagen 0,40 e) bunt h) [UM f) g) ^{a)} Schluff, tonig, sandig, schwach kiesig b) Kohlestückchen, schwarze Verfärbungen an Schollenabbruch 0,60 c) steif-halbfest d) e) mittelbraun g) h) UM/ TM Schluff, tonig, sandig, fein- bis mittelkiesig b) Kiesel, feine Kiesgerölle 3,00 c) weich-steif rotbraun h) UM/ TM 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage 3 Schichtenverzeichnis Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: **Bohrung** Nr B1-HSCH /Blatt 1 31.10.2001 2 3 4 5 6 1 a) Benennung der Bodenart und Beimengungen Entnommene Proben Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe m Bohrwerkzeuge in m unter c) Beschaffenheit d) Beschaffenheit e) Farbe Art Nr. Kernverlust (Unternach Bohrgut nach Bohrvorgang Ansatz Sonstiges kante) punkt i) Kalk-Übliche g) Geologische 1) h) 1) Benennung Benennung Gruppe gehalt Schluff, sandig, tonig, schwach humos b) 0,10 c) d) h) UM/ f) g) TM a) b) c) d) e) i) f) h) g) a) b) d) c) e) i) f) g) h) a) b) c) d) e) f) g) h) i) a) b) d) c) e) f) h) i) g) 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage 3 Schichtenverzeichnis Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: Bohrung Nr B2-BSCH /Blatt 1 31.10.2001 2 3 5 1 Entnommene Proben a) Benennung der Bodenart und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe . . . m Bohrwerkzeuge in m Nr. unter c) Beschaffenheit d) Beschaffenheit e) Farbe Art Kernverlust (Unter-Ansatznach Bohrgut nach Bohrvorgang Sonstiges kante) punkt Übliche g) Geologische 1) h) 1) i) Kalk-Benennung Benennung Gruppe gehalt Schluff, fein- bis mittelsandig, humos b) Versuch bei 0,10 -0,4 m e) dunkelbraun d) h) OH/ i) f) g) UL a) Schluff, stark sandig, schwach kiesig, humos Glasreste 0,60 e) dunkelbraun d) c) weich h) [UM | i) f) g) a) Schluff, tonig, stark sandig, mittel- bis grobkiesig b) Mangan-Konkr 1,40 etionen c) halbfest d) e) rotbraun h) UM/ g) TM a) b) c) d) e) f) g) h) i) a) b) d) c) e) h) i) g) 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage 3 Schichtenverzeichnis Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: Bohrung Nr B3-RKS /Blatt 1 31.10.2001 2 1 5 a) Benennung der Bodenart Entnommene Proben und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Tiefe Wasserführung Bohrwerkzeuge in m c) Beschaffenheit e) Farbe unter d) Beschaffenheit Art Nr. Kernverlust (Unter-Ansatz nach Bohrgut nach Bohrvorgang Sonstiges kante) punkt Übliche h) 1) g) Geologische 1) i) Kalk-Benennung Benennung Gruppe gehalt Schluff, tonig, schwach sandig, humos bis 0,1m Grasnarbe 0.40 erdfeucht d) leicht zu bohren c) weich-steif e) dunkelbraun h) OH/ g) Quartär Oberboden UM a) Feinkies, sandig, schluffig, schwach tonig b) Tonschieferbruchstücke erdfeucht; lokal 0.85 Mn-Ausscheidu e) hellbraun, c) steif d) leicht zu bohren gräulich ngen h) GW f) Hanglehm g) Quartär a) Schluff, tonig, stark sandig b) 0,95 erdfeucht e) braun d) leicht zu bohren steif h) UM/ i) g) Quartär Hanglehm TM 2,50 a) Feinsand, schwach mittelsandig, schwach feinkiesig, BP untergeordnet Schluff-Anteil b) lokal bindige Lagen erdfeucht 2,50 Mn-Ausscheidu d) leicht zu bohren e) braun-rötlich ngen (Nester) braun h) SU i) g) Quartär Hauptterrasse Schluff, schwach tonig, feinsandig b) Feinkies-Einstreuung 2,80 e) hellbraun c) weich-steif h) UM g) Quartär Hauptterrasse 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Schichtenverzeichnis

Anlage 3

Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: **Bohrung** Nr B3-RKS /Blatt 2 31.10.2001 2 3 5 1 a) Benennung der Bodenart und Beimengungen Entnommene Proben Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe m Bohrwerkzeuge in m unter c) Beschaffenheit d) Beschaffenheit e) Farbe Nr. Art Kernverlust (Unternach Bohrgut nach Bohrvorgang Ansatz-Sonstiges kante) punkt i) Kalk-Übliche g) Geologische 1) h) 1) Benennung Benennung Gruppe gehalt Feinsand, schwach mittelsandig b) 3,00 d) leicht zu bohren e) hellbraun-rötli chbraun h) SE i) g) Quartär Hauptterrasse b) c) d) e) i) f) h) g) a) b) d) c) e) i) f) g) h) a) b) c) d) e) f) g) h) i) a) b) d) c) e) f) h) i) g)

1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage 3 Schichtenverzeichnis Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: Bohrung Nr B4-RKS /Blatt 1 31.10.2001 2 3 5 1 a) Benennung der Bodenart Entnommene Proben und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe m Bohrwerkzeuge in m unter c) Beschaffenheit d) Beschaffenheit e) Farbe Nr. Art Kernverlust (Unter-Ansatznach Bohrgut nach Bohrvorgang Sonstiges kante) punkt Übliche g) Geologische 1) h) 1) i) Kalk-Gruppe Benennung Benennung gehalt Mittelsand, feinsandig, schluffig, humos bis 0,1 m Grasnarbe, Wurzeln 0,50 d) leicht zu bohren e) dunkelbraun f) Oberboden h) SU/ g) Quartär OH Mittelkies, sandig, schwach grobkiesig Quarz, Sandstein, Tonschiefer 1,60 trocken e) graubraun, c) d) schwer zu bohren bunt h) GW f) i) g) Quartär a) b) d) c) e) f) i) g) h) a) b) c) d) e) f) g) h) i) a) b) c) d) e) h) i) g) 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage 3 Schichtenverzeichnis Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: Bohrung Nr B5-RKS /Blatt 1 31.10.2001 2 3 1 5 a) Benennung der Bodenart Entnommene Proben und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Tiefe Wasserführung Bohrwerkzeuge in m c) Beschaffenheit d) Beschaffenheit e) Farbe unter Art Nr. (Unter-Kernverlust Ansatz nach Bohrgut nach Bohrvorgang Sonstiges kante) punkt g) Geologische 1) i) Kalk-Übliche h) 1) Benennung Benennung gehalt Auffüllung / Sand b) 0,40 feucht d) leicht zu bohren e) gelb h) [SW | i) g) Auffüllung Auffüllung / Mittelkies, sandig Schlacke 0.85 nass ^{e)} schwarz d) schwer zu bohren h) [GW i) f) g) Auffüllung a) Feinsand, schwach schluffig b) 0,95 erdfeucht d) leicht zu bohren ^{e)} braun h) SU ^{g)} Quartär Hauptterrasse a) Feinsand, schwach mittelsandig b) 1,95 erdfeucht d) schwer zu e) hellbraun bohren h) SE g) Quartär Hauptterrasse BP 1 2.00 Mittelsand, schwach grobsandig, schwach feinkiesig b) Quarz, Tonschieferbröckchen 2,00 erdfeucht d) schwer zu gelbbraun bohren h) SW g) Quartär Hauptterrasse 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage 3 Schichtenverzeichnis Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: Bohrung Nr B6-RKS /Blatt 1 31.10.2001 2 1 3 5 a) Benennung der Bodenart Entnommene Proben und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Tiefe Wasserführung . . . m Bohrwerkzeuge in m c) Beschaffenheit e) Farbe unter d) Beschaffenheit Art Nr. Kernverlust (Unter-Ansatz nach Bohrgut nach Bohrvorgang Sonstiges kante) punkt Übliche g) Geologische 1) h) 1) i) Kalk-Benennung Benennung Mittelsand, stark feinsandig, schwach schluffig, humos b) 0,40 d) leicht zu bohren e) dunkelbraun h) SU g) Quartär Oberboden Mittelsand, feinkiesig, schluffig, schwach tonig b) Tonschieferplättchen (= fG) 1,30 erdfeucht e) braungrau, d) leicht zu bohren rötlich h) SU f) i) g) Quartär a) Feinkies, sandig, schwach schluffig b) 1,60 erdfeucht d) leicht zu bohren c) braun h) GW f) ^{g)} Quartär ^{a)} Ton, schluffig, sandig, schwach feinkiesig b) Tonschieferplättchen (= fG) erdfeucht lokal 2,10 Mn-Ausscheidu d) schwer zu e) rötlichbraun c) steif-halbfest ngen bohren h) TM g) Quartär a) Feinkies, sandig, schluffig, schwach tonig BP 1 3.50 erdfeucht-trock 3,50 d) schwer zu e) rötlichbraun, en c) halbfest bohren grau h) GW g) Quartär Hanglehm 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage 3 Schichtenverzeichnis Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: Bohrung Nr B7-RKS /Blatt 1 31.10.2001 2 1 a) Benennung der Bodenart Entnommene Proben und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Tiefe Wasserführung Bohrwerkzeuge in m d) Beschaffenheit c) Beschaffenheit e) Farbe unter Art Nr. Kernverlust (Unter-Ansatz nach Bohrgut nach Bohrvorgang Sonstiges kante) punkt Übliche i) Kalkg) Geologische 1) h) 1) Benennung Benennung gehalt Auffüllung / Sand, kiesig, schluffig bis 0,1 m humos, Wurzeln 1,00 erdfeucht e) braun, grau, bunt h) [SU] g) Auffüllung a) Auffüllung / Schluff, sandig b) erdfeucht -2.00 feucht c) weich d) leicht zu bohren e) braun h) [SU] g) Auffüllung ^{a)} Auffüllung / Sand, schluffig, steinig, schwach kiesig b) Bauschuttreste 3,00 erdfeucht e) braun, grau, d) schwer zu bohren rot h) [SU] g) Auffüllung ^{a)} Auffüllung / Schluff, sandig, schwach feinkiesig b) an Basis Verbraunungshorizont, vermischt 4,00 erdfeucht c) steif-weich e) braun, d) leicht zu bohren beige, lokal h) [UL] g) Auffüllung a) Schluff, schwach tonig, sandig, schwach feinkiesig b) Quarz, Tonschieferbruch 4,50 erdfeucht c) steif d) leicht zu bohren ^{e)} braun h) UM g) Quartär Hanglehm 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Schichtenverzeichnis

Anlage 3

Bericht:

	Cabiabtanyamaiabaia								Bericht:			
			Schicht	Schichtenverzeichnis						Az.: 3601		
Bauvorh	naben: Ve	rsickerung, Petri	sberg									
Bohrung Nr B7-RKS /Blatt 2									Datum: 31.10.2001			
1	2							3	4	5	6	
Bis m unter Ansatz- punkt	Benennung der Bodenart und Beimengungen							Bemerkungen Sonderprobe Wasserführung	Entnommene Proben			
	b) Ergänzende Bemerkungen ¹)										Tiefe	
	nach	haffenheit Bohrgut	d) Beschaffenheit nach Bohrvorgang		e) Farbe			Bohrwerkzeuge Kernverlust Sonstiges	Art	Nr.	in m (Unter- kante)	
	f) Üblic Bene	he nnung	g) Geologische ¹) Benennung	h)	1) Gruppe	i)	Kalk- gehalt					
4,80	a) Mittelsand, grobsandig, schluffig, schwach kiesig							and farmed a				
	b)											
	c)		d) schwer zu bohren	^{e)} braun			erdfeucht					
	f) Mitte	elterrasse	^{g)} Quartär	h)	SU	i)						
5,00	a) Mittelkies, feinkiesig, sandig								BP	1	5,00	
	b) Top schwach schluffig											
	c)	d) schwer zu bohren		e) gelbbraun, bunt			ın,					
	^{f)} Hau	ptterrasse	^{g)} Quartär	h)	GW	i)						
	a)											
	b)											
	c)		d)	e)				-				
	f)		g)	h)		i)						
	a)											
	b)											
	c)		d) e)									
	f)		g)	h)		i)						
	a)											
	b)											
	c)	d) e)										
	f)		g)	h)		i)						
1) Ein	itragung ni	immt der wissen	schaftliche Bearbeiter vor.	1				1		1	1	

Anlage 3 Schichtenverzeichnis Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: Bohrung Nr B8-RKS /Blatt 1 31.10.2001 2 3 1 5 a) Benennung der Bodenart Entnommene Proben und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe . . . m Bohrwerkzeuge in m unter c) Beschaffenheit d) Beschaffenheit e) Farbe Nr. Art Kernverlust (Unter-Ansatznach Bohrgut nach Bohrvorgang Sonstiges kante) punkt i) Kalk-Übliche g) Geologische 1) h) 1) Benennung Benennung gehalt Auffüllung / Sand, schwach schluffig, kiesig, steinig Bauschutt, Ziegelbruch 0,70 erdfeucht d) schwer zu e) braun, bohren rötlichgrau h) [SU] g) Auffüllung a) Auffüllung / Schluff, tonig, sandig, schwach kiesig, BP 1 2,20 schwach steinig Bauschuttreste 2.20 erdfeucht e) grau-graubra d) leicht zu bohren c) weich-steif un h) [UM | i) f) g) Grobsand, mittelsandig, schwach feinkiesig, schluffig b) bindig 3,00 d) leicht zu bohren rötlichbraun h) SU/ i) ^{g)} Quartär Hauptterrasse UL a) b) c) d) e) f) g) i) a) b) c) d) e) g) h) i) 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage 3 Schichtenverzeichnis Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: Bohrung Nr B9-BSCH /Blatt 1 31.10.2001 2 3 1 5 a) Benennung der Bodenart Entnommene Proben und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe . . . m Bohrwerkzeuge in m d) Beschaffenheit c) Beschaffenheit e) Farbe unter Art Nr. Kernverlust (Unter-Ansatz nach Bohrgut nach Bohrvorgang Sonstiges kante) punkt Übliche h) 1) g) Geologische 1) i) Kalk-Benennung Benennung gehalt Schluff, sandig, kiesig, schwach tonig, humos 0,20 e) dunkelbraun d) c) weich-steif h) OH/ g) UM a) Schluff, sandig, kiesig, tonig BP 1 0,90 b) 0,90 e) rotbraun d) c) steif h) UM/ g) TM a) Schluff, stark sandig, schwach kiesig b) Kiesgerölle 1,20 c) steif d) e) mittelbraun h) UM g) a) Kies, schluffig, sandig b) Kiesgerölle 1,40 e) rotbraun d) h) GU g) Kies, sandig, schwach schluffig, steinig b) Kiesgerölle 1,70 e) rötlichbraun / d) rostorange h) GW/ i) GU 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage 3 Schichtenverzeichnis Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: Bohrung Nr B10-RKS /Blatt 1 31.10.2001 2 1 3 5 a) Benennung der Bodenart Entnommene Proben und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Tiefe Wasserführung Bohrwerkzeuge in m d) Beschaffenheit c) Beschaffenheit e) Farbe unter Art Nr. Kernverlust (Unter-Ansatz nach Bohrgut nach Bohrvorgang Sonstiges kante) punkt i) Kalk-Übliche g) Geologische 1) h) 1) gehalt Benennung Benennung a) Auffüllung / Sand, schwach schluffig, schwach kiesig, schwach steinig vereinzelt Schlackenreste 0.70 erdfeucht e) braun, grau, d) schwer zu bohren schwarz h) [SU] g) Auffüllung Auffüllung / Sand, schluffig, steinig b) Schlacken, Hausbrand, Müllreste 1.00 trocken e) graubraun, d) leicht zu bohren schwarz h) [SU] f) g) Auffüllung BP 1 3,00 Auffüllung / Schluff, sandig, kiesig b) Müll, Hausbrand, Draht, Glas feucht, 4,00 muffiger d) leicht zu bohren Geruch schwarz h) [UL] f) g) Auffüllung ^{a)} Feinkies, sandig, schluffig, schwach tonig b) Tonschieferbruch, bindig 4,90 erdfeucht d) leicht zu bohren e) rötlichbraun c) weich-steif h) GU f) Hauptterrasse g) Quartär Mittelsand, grobsandig, kiesig 5,00 trocken d) schwer zu e) hellbraun, c) bohren bunt h) SW g) Quartär Hauptterrasse 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage 3 Schichtenverzeichnis Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: **Bohrung** Nr B11-HSCH 31.10.2001 2 3 4 5 1 6 Entnommene Proben a) Benennung der Bodenart und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe m Bohrwerkzeuge in m unter c) Beschaffenheit d) Beschaffenheit e) Farbe Art Nr. (Unter-Kernverlust nach Bohrvorgang Ansatz nach Bohrgut Sonstiges kante) punkt Übliche h) 1) i) Kalkg) Geologische 1) Benennung Benennung Gruppe gehalt a) Fein- bis Mittelsand, stark schluffig, schwach tonig, fein- bis mittelkiesig b) 0,05 c) d) h) SU/ f) g) UL a) b) c) d) e) i) f) h) g) a) b) c) d) e) i) f) g) h) a) b) c) d) e) f) g) h) i) a) b) d) c) e) f) h) i) g) 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage 3 Schichtenverzeichnis Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: **Bohrung** Nr B12-HSCH 31.10.2001 2 3 4 5 6 1 Entnommene Proben a) Benennung der Bodenart und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe m Bohrwerkzeuge in m unter c) Beschaffenheit d) Beschaffenheit e) Farbe Art Nr. Kernverlust (Unternach Bohrvorgang Ansatz nach Bohrgut Sonstiges kante) punkt g) Geologische 1) h) 1) i) Kalk-Übliche Benennung Benennung Gruppe gehalt a) Schluff, stark sandig, schwach kiesig, schwach tonig, humos b) 0,10 c) d) h) UL/ f) i) g) TL a) b) c) d) e) i) f) h) g) a) b) c) d) e) i) f) g) h) a) b) c) d) e) f) g) h) i) a) b) d) c) e) f) h) i) g) 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage 3 Schichtenverzeichnis Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: **Bohrung** Nr B13-HSCH 31.10.2001 2 3 5 6 1 a) Benennung der Bodenart und Beimengungen Entnommene Proben Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe m Bohrwerkzeuge in m unter c) Beschaffenheit d) Beschaffenheit e) Farbe Art Nr. Kernverlust (Unternach Bohrgut nach Bohrvorgang Ansatz Sonstiges kante) punkt i) Kalk-Übliche g) Geologische 1) h) 1) Benennung Benennung Gruppe gehalt Schluff, fein- bis mittelsandig, humos b) 0,05 e) braun d) c) h) OH/ i) f) g) UL a) b) c) d) e) i) f) h) g) a) b) d) c) e) i) f) g) h) a) b) c) d) e) f) g) h) i) a) b) d) c) e) f) h) i) g) 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage 3 Schichtenverzeichnis Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: Bohrung Nr B14-BSCH /Blatt 1 31.10.2001 2 3 1 5 a) Benennung der Bodenart Entnommene Proben und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Tiefe Wasserführung . . . m Bohrwerkzeuge in m c) Beschaffenheit d) Beschaffenheit e) Farbe Nr. unter Art Kernverlust (Unter-Ansatz nach Bohrgut nach Bohrvorgang Sonstiges kante) punkt Übliche g) Geologische 1) h) 1) i) Kalk-Benennung Benennung Gruppe gehalt Sand, schluffig, humos b) 0,30 e) dunkelbraun d) h) OH/ f) g) SU Auffüllung / Sand, kiesig, steinig b) Ziegel-/Teerreste; Bauschutt 1,50 d) e) h) [SW f) g) a) Schluff, stark sandig, schwach tonig b) Ebene 2,00 Versickerungsv c) weich d) e) ockerbraun ersuch h) UM g) Lößlehm ^{a)} Schluff, sandig, schwach tonig, schwach humos b) Fe-/Mn-Tapete 2,20 e) dunkelbraun c) weich d) Wurzelgängen h) UL g) Schluff, stark sandig, kiesig b) Tonschieferbruch, gerundet; durchwurzelt Mn-Konkretion 3,20 d) e) rotbraun en c) h) UL

1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Schichtenverzeichnis

Anlage 3

Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: **Bohrung** Nr B14-BSCH /Blatt 2 31.10.2001 2 3 5 1 a) Benennung der Bodenart und Beimengungen Entnommene Proben Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe m Bohrwerkzeuge in m unter c) Beschaffenheit d) Beschaffenheit e) Farbe Art Nr. Kernverlust (Unternach Bohrgut nach Bohrvorgang Ansatz-Sonstiges kante) punkt i) Kalk-Übliche g) Geologische 1) h) 1) Benennung Benennung Gruppe gehalt Feinsand, schwach schluffig, kiesig rote Tonlinsen 4,00 e) ocker/gelbbra d) un h) SW f) g) i) a) b) c) d) e) i) f) h) g) a) b) d) c) e) i) f) g) h) a) b) c) d) e) f) g) h) i) a) b) d) c) e) f) h) i) g)

1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage 3 Schichtenverzeichnis Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: Bohrung Nr B15 - BSCH /Blatt 1 31.10.2001 2 3 1 5 a) Benennung der Bodenart Entnommene Proben und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe m Bohrwerkzeuge in m c) Beschaffenheit d) Beschaffenheit e) Farbe unter Art Nr. Kernverlust (Unter-Ansatz nach Bohrgut nach Bohrvorgang Sonstiges kante) punkt Übliche g) Geologische 1) h) 1) i) Kalk-Benennung Benennung Gruppe gehalt Schluff, sandig, kiesig, humos b) 0,20 e) dunkelbraun c) d) h) OH/ i) f) g) UL a) Auffüllung / Schluff, stark sandig, stark kiesig, steinig, BP 3,60 b) Schieferreste, Sandstein, Glas, Asphalt, Kabel, verbanntes Holz 3,60 d) c) steif e) rotbraun h) [UM f) i) g) /TM] a) Fein- bis Mittelsand, grobsandig, mittel- bis grobkiesig, BP 2 4,00 schwach tonig rote Tonlinsen 4,00 e) ocker/ d) rötlichbraun h) SW f) g) a) b) c) d) e) f) g) h) i) a) b) c) d) e) f) h) i) g) 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage 3 Schichtenverzeichnis Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: **Bohrung** Nr C1 - HSCH /Blatt 1 31.10.2001 2 3 4 5 6 1 Entnommene Proben a) Benennung der Bodenart und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe m Bohrwerkzeuge in m unter c) Beschaffenheit d) Beschaffenheit e) Farbe Art Nr. Kernverlust (Unternach Bohrvorgang Ansatz nach Bohrgut Sonstiges kante) punkt h) 1) i) Kalk-Übliche g) Geologische 1) Benennung Benennung Gruppe gehalt Schluff, feinsandig, schwach mittel- bis grobkiesig b) 0,10 c) d) h) UM f) g) i) a) b) c) d) e) i) f) h) g) a) b) d) c) e) i) f) g) h) a) b) c) d) e) f) g) h) i) a) b) d) c) e) f) h) i) g) 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage 3 Schichtenverzeichnis Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: Bohrung Nr C2 - RKS /Blatt 1 31.10.2001 2 1 a) Benennung der Bodenart Entnommene Proben und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Tiefe Wasserführung Bohrwerkzeuge in m c) Beschaffenheit d) Beschaffenheit e) Farbe Nr. unter Art Kernverlust (Unter-Ansatznach Bohrgut nach Bohrvorgang Sonstiges kante) punkt h) 1) i) Kalk-Übliche g) Geologische 1) gehalt Benennung Benennung Sand, schwach schluffig, schwach humos Kieseinstreuung 0,40 erdfeucht d) leicht zu bohren e) dunkelbraun ^{h)} SU f) Oberboden g) Quartär a) Schluff, sandig, tonig, mit Kiesnestern b) 1,10 erdfeucht c) steif d) leicht zu bohren e) braun f) Hanglehm h) UM i) g) Quartär ^{a)} Grobsand, mittelsandig, schwach schluffig b) dazwischen mehrere U,t,s-Lagen (M=10cm) 1,90 erdfeucht d) leicht zu bohren e) braun h) SU i) g) Quartär a) Schluff, sandig b) lokal dünne Tonlagen (hellgraubraun) 3,00 erdfeucht e) hellbraun / c) steif beige h) UL f) Hanglehm g) Quartär b) c) d) e) h) i) 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage 3 Schichtenverzeichnis Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: **Bohrung** Nr C3 - HSCH /Blatt 1 31.10.2001 2 3 4 5 1 6 Entnommene Proben a) Benennung der Bodenart und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe m Bohrwerkzeuge in m unter c) Beschaffenheit d) Beschaffenheit e) Farbe Art Nr. Kernverlust (Unternach Bohrvorgang Ansatz nach Bohrgut Sonstiges kante) punkt Übliche h) 1) i) Kalkg) Geologische 1) Benennung Benennung Gruppe gehalt a) Schluff, fein- bis mittelsandig, schwach feinkiesig, schwach tonig, schwach humos b) 0,15 c) d) h) UL/ f) i) g) TL a) b) c) d) e) i) f) h) g) a) b) c) d) e) i) f) g) h) a) b) c) d) e) f) g) h) i) a) b) d) c) e) f) h) i) g) 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage 3 Schichtenverzeichnis Bericht: Schichtenverzeichnis Az.: 3601 Bauvorhaben: Versickerung, Petrisberg Datum: **Bohrung** Nr C4 - HSCH /Blatt 1 31.10.2001 2 3 4 5 6 1 Entnommene Proben a) Benennung der Bodenart und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe m Bohrwerkzeuge in m unter c) Beschaffenheit d) Beschaffenheit e) Farbe Art Nr. Kernverlust (Unternach Bohrvorgang Ansatz nach Bohrgut Sonstiges kante) punkt i) Kalk-Übliche g) Geologische 1) h) 1) Benennung Benennung Gruppe gehalt Schluff, sandig, mittel- bis grobkiesig b) 0,10 c) d) h) UM f) g) i) a) b) c) d) e) i) f) h) g) a) b) d) c) e) i) f) g) h) a) b) c) d) e) f) g) h) i) a) b) d) c) e) f) h) i) g) 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Projekt:	Untersuchungen zur Infiltration - Trier Petrisberg	Projekt-Nr.:	3601
i OjOitti.	Chicheachangen zar minitation Thorrotholog	i rojona i ii	

Datum: 09.10.2001

Aufschluß: A1 - BSch Versuchsfläche [m uGOK]: 0,5

Durchmesser innerer Ring: 30 cm Bodenart 4022: U, s, g, x, t' // S, g, x, t'

Durchmesser äußerer Ring: 55 cm Bodengruppe 18196: <u>UL/UM-SU</u> Einschlagtiefe: Bewuchs: Laubbaumbestand 5 cm vorhanden

Auffüllhöhe: 7 cm Wurzeln:

Bezugspunkt:	-	9,3 cm	10					
Dozagopaniki.	-	0,0 0111				Seite 1 /		
Zeit, t [min]	dt [sec]	Ablesung [cm]	reale Ab [cm]	senkung [m]	Infiltrationsrate [m/s]	Bemerkung		
1	0	9,3						
6	300	9,5	0,2	0,002	6,7E-06			
11	300	9,6	0,1	0,001	3,3E-06			
16	300	9,8	0,2	0,002	6,7E-06			
21	300	10,0	0,2	0,002	6,7E-06			
26	300	10,1	0,1	0,001	3,3E-06			
31	300	10,3	0,2	0,002	6,7E-06			
36	300	10,4	0,1	0,001	3,3E-06			
41	300	10,4	0	0	0,0E+00			
46	300	10,5	0,1	0,001	3,3E-06			
51	300	10,6	0,1	0,001	3,3E-06			
56	300	10,7	0,1	0,001	3,3E-06			
61	300	10,8	0,1	0,001	3,3E-06			
66	300	10,9	0,1	0,001	3,3E-06			
71	300	11,0	0,1	0,001	3,3E-06			
76	300	11,1	0,1	0,001	3,3E-06			
81	300	11,2	0,1	0,001	3,3E-06			
86	300	11,2	0	0	0,0E+00			
91	300	11,3	0,1	0,001	3,3E-06			
96	300	11,3	0	0	0,0E+00			
101	300	11,3	0	0	0,0E+00			
106	300	11,4	0,1	0,001	3,3E-06			
esamt	6300			0,021	3,3E-06			
	Versickerungs	sversuch Petris	berg A1	kf =	3,3E-06	Wert über gesamten Versuchszeitraum		
1,0E-04 1,0E-05 1,0E-06	~	•••••	• •					
1,0E-07 0	20 40	60 80	100 120					
Zeit [min] Durchführung : Wi Umwell u. Geotechnik						Projekt-Nr: 3601		
el:06501-9 ax:06501-9	9 93 00	Unterschrift :				Anlage : 4.1.1		

Versickerungsversuch mittels **Doppelring-Infiltrometer** 3601 Projekt: Untersuchungen zur Infiltration - Trier Petrisberg Projekt-Nr.: Datum: 08.10.2001 Aufschluß: A2 - BSch Versuchsfläche [m uGOK]: 0,1 Durchmesser innerer Ring: Bodenart 4022: U, t,s, g, x Durchmesser äußerer Ring: 53 cm Bodengruppe 18196: UM Einschlagtiefe: Bewuchs: 9,5 cm Gras Auffüllhöhe: 7,0 cm Wurzeln: vorhanden Bezugspunkt: 8,4 cm Seite 1/ reale Absenkung Zeit, t [min] dt [sec] Ablesung [cm] Infiltrationsrate [m/s] Bemerkung [cm] [m] 0 0 8,4 30 1800 8,5 0,1 0,001 5,6E-07 60 1800 8,5 0 0 0,0E+00 1,1E-06 90 1800 8,7 0,2 0,002 120 1800 8,8 0,1 0,001 5,6E-07 150 1800 8,9 0,1 0,001 5,6E-07 1095 56700 14,8 5,9 0,059 1,0E-06 letzte Ablesung mittels Metermaß! Gesamt 65700 0,064 9,7E-07 kf = 9,7E-07 Wert über gesamten Versuchszeitraum Versickerungsversuch Petrisberg A2 1,0E-04 1,0E-05 1,0E-06 1,0E-07 1,0E-06 200 400 600 800 1000 1200 Zeit [min] Projekt-Nr..: 3601 Durchführung : Le Hever Gmb Unterschrift: Anlage : 4.1.2 Tel: 0 65 01 - 9 93 80 Fax: 0 65 01 - 9 93 81 eMail: heyer.umwelt@t-online.de

Versickerungsversuch mittels **Doppelring-Infiltrometer** Untersuchungen zur Infiltration - Trier Petrisberg 3601 Projekt: Projekt-Nr.: Datum: 09.10.2001 Aufschluß: A3 - HSch Versuchsfläche [m uGOK]: 0,1 Bodenart 4022: Durchmesser innerer Ring: 30 cm U, s, g, t', x' Bodengruppe 18196: UL/UM Durchmesser äußerer Ring: 55 cm Einschlagtiefe: Bewuchs: Sträucher 5 cm Auffüllhöhe: 8 cm Wurzeln: vorhanden Bezugspunkt: 4,4 cm Seite 1 / reale Absenkung Infiltrationsrate Zeit, t [min] dt [sec] Ablesung [cm] Bemerkung [m/s] [cm] [m] 0 0 4,4 6 5,2 360 0,8 0,008 2,2E-05 10 0,4 240 5,6 0,004 1,7E-05 15 300 6,3 0,7 0,007 2,3E-05 20 300 7,0 0,7 2,3E-05 0,007 25 300 7,5 0,5 0,005 1,7E-05 300 30 8,0 0,5 0,005 1,7E-05 35 300 8,6 0,6 0,006 2,0E-05 40 300 9,0 0,4 0,004 1,3E-05 45 300 9,6 0,6 0,006 2,0E-05 50 300 10,0 0,4 0,004 1,3E-05 55 300 10,4 0,4 0,004 1,3E-05 0 79 1440 3,0 360 3,8 8,0 85 0,008 2,2E-05 neue Füllung 90 0,6 300 4,4 0,006 2,0E-05 95 300 5,0 0,6 0,006 2,0E-05 105 600 6,3 1,3 0,013 2,2E-05 110 300 6,9 0,6 0,006 2,0E-05 115 300 7,4 0,5 0,005 1,7E-05 120 300 7,9 0,5 0,005 1,7E-05 300 0,5 125 8,4 0,005 1,7E-05 130 300 8,9 0,5 0,005 1,7E-05 135 300 0,5 0,005 9,4 1,7E-05 1,8E-05 kf = 1,8E-05 Wert über gesamten Versuchszeitraum Versickerungsversuch Petrisberg A3 (1,0E-04 1,0E-05 1,0E-06 1,0E-07 50 100 150 Zeit [min] Durchführung : Le Projekt-Nr..: 3601 Heyer Gmb Unterschrift : Anlage : 4.1.3 Tel: 0 65 01 - 9 93 80 Fax: 0 65 01 - 9 93 81 eMail: heyer.umwelt@t-online.de

Versickerungsversuch mittels **Doppelring-Infiltrometer** 3601 Projekt: Untersuchungen zur Infiltration - Trier Petrisberg Projekt-Nr.: Datum: 08.10.2001 Aufschluß: A5 - HSch Versuchsfläche [m uGOK]: 0,1 Durchmesser innerer Ring: 30 cm Bodenart 4022: U, t, s, g, x Bodengruppe 18196: UM, TM Durchmesser äußerer Ring: 55 cm Einschlagtiefe: 5 cm Bewuchs: Gras 8,5 cm Auffüllhöhe: Wurzeln: vorhanden Bezugspunkt: 5,9 cm Seite 1 / reale Absenkung Infiltrationsrate Zeit, t [min] dt [sec] Ablesung [cm] Bemerkung [cm] [m/s] [m] 0 0 5,9 deutlich übernäßter Boden 90 5400 5,9 0 0 0.0E+00 0,001 0,1 930 55800 6,0 1,8E-08 kf = 1,8E-08 Endwert Versickerungsversuch Petrisberg A5 1,0E-05 1,0E-06 1,0E-07 1,0E-08 1,0E-09 200 400 600 800 1000 Zeit [min] Durchführung : Hy, Sc Projekt-Nr..: 3601 Hever Gmb Unterschrift: Anlage : 4.1.4 Tel: 0 65 01 - 9 93 80 Fax: 0 65 01 - 9 93 81 eMail: heyer.umwelt@t-online.de

Versickerungsversuch mittels

		Do	ppelring	-Infiltrome	eter	
Projekt:	Untersuchung	en zur Infiltratio	n - Trier Petri	sberg	Projekt-Nr.:	3601
Datum:	09.10.2001					
		-				
Aufschluß:	A6 - BSch	,	Versuchsfläch	ne [m uGOK]: 1	,2	
Durchmesser	innerer Ring:	30 cm			Bodenart 4022:	U, t, s, g
	äußerer Ring:	55 cm			Bodengruppe 18	
Einschlagtiefe	:	2 cm			Bewuchs:	Laubbäume
Auffüllhöhe: Bezugspunkt:		8 cm			Wurzeln:	wenige
Dezugspunkt.						Seite 1 /
Zeit, t [min]	dt [sec]	Ablesung [cm]	reale Ab [cm]	senkung [m]	Infiltrationsrate [m/s]	Bemerkung
0	0	1.0	[CIII]	[,,,]	[0]	
5		1,0	0,3	0,003	1,0E-05	
12						
15			0,4 0,2	0,004 0,002	9,5E-06 1,1E-05	
25			0,2	0,002	1,1E-05 1,0E-05	
30			0,6	0,006	6,7E-06	
35			0,2	0,002	6,7E-06	
40			0,2	0,002	6,7E-06	
45		, i	0,2	0,002	6,7E-06	
50			0,2	0,002	0,7 L-00	neue Füllung
55		, i	0,3	0,003	1,0E-05	
1117			0,5	0,000	1,02-00	neue Füllung
1148			0,4	0,004	2,2E-06	
1288			0,22	0,0022	2,6E-07	
				kf =	2,6E-07	Endwert
1,0E-04	Ver	sickerungsversuch Petri	sberg A6	,		
[m/s]						
Infiltrationsrate [m/s]			•			
ig 1,0E-06 ⋅						
1,0E-07	0 200 400	600 800	1000 1200 1	400		
		Zeit [min]				
H	Heyer Gmbl	Durchführung :	Sc, Wi			Projekt-Nr: 3601
		li lata de 10				Anlana v 4 4 5
Tel: 0 65 01		Unterschrift :				Anlage : 4.1.5
Fax: 0 65 01 - eMail: heyer.umv		-				

			_	-Infiltrome	eter	
Projekt:	Untersuchung	en zur Infiltratio	Projekt-Nr.:	3601		
Datum:	09.10.2001	-				
Aufschluß:	A7 - BSch		Versuchsfläch	ne [m uGOK]: 0),7	
Durchmesser i	nnerer Ring:	30 cm				
Durchmesser å	_	55 cm			Bodengruppe 181	
Einschlagtiefe:		5 cm			Bewuchs:	junger Laubbaumbestand
Auffüllhöhe: Bezugspunkt:		10 cm 4,4 cm			Wurzeln:	vorhanden
						Seite 1 /
Zeit, t [min]	dt [sec]	Ablesung [cm]	reale Ab [cm]	senkung [m]	Infiltrationsrate [m/s]	Bemerkung
0	0	4,4				
5	300	4,4	0	0	0,0E+00	
10	300	4,5	0,1	0,001	3,3E-06	
15	300	4,5	0	0	0,0E+00	
20	300	4,5	0	0 004	0,0E+00	
30	600	4,6	0,1	0,001	1,7E-06	
35	300	4,6	0	0	0,0E+00	
65 100	1800 2100	4,6	0,1	0,001	0,0E+00 4,8E-07	
1165	63900	4,7 5,4	0,7	0,001	4,8E-07 1,1E-07	
1240	4500		0,7	0,007	0,0E+00	
1422	10920		0	0	0,0E+00	
1122	10020	0,1	J		0,02100	
				kf =	1,1E-07	Endwert
1,0E-04 [s/ <u>E</u>] e) 1,0E-05	Versicker	ungsversuch Petrisberg	A7			
1,0E-05						
= _{1,0E-07}	200 400 60		00 1400 1600			
		Zeit [min]				
	leyer _{Gmbl}		Wi			Projekt-Nr : 3601
Tel:06501-		Unterschrift :				Anlage : 4.1.6

Versickerungsversuch mittels **Doppelring-Infiltrometer** 3601 Projekt: Untersuchungen zur Infiltration - Trier Petrisberg Projekt-Nr.: Datum: 09.10.2001 Aufschluß: A9 - BSch Versuchsfläche [m uGOK]: 1,00 Durchmesser innerer Ring: 28 cm Bodenart 4022: U, t, fs Bodengruppe 18196: [UM/TM] Durchmesser äußerer Ring: 53 cm Einschlagtiefe: 3 cm Bewuchs: junger Laubbaumbestand Auffüllhöhe: 8 cm Wurzeln: vorhanden Bezugspunkt: 7,7 cm Seite 1 / reale Absenkung Infiltrationsrate Zeit, t [min] dt [sec] Ablesung [cm] Bemerkung [m/s] [cm] 0 0 7,7 5 300 9.0 1,3 0,013 4,3E-05 10 300 10,1 1,1 0,011 3,7E-05 300 15 11,0 0,9 0,009 3,0E-05 20 300 11,7 0,7 0,007 2,3E-05 25 300 12,3 0,6 0,006 2,0E-05 30 300 12,8 0,5 0,005 1,7E-05 35 300 13,2 0,4 0,004 1,3E-05 40 300 13,5 0,3 0,003 1,0E-05 45 300 8,9 0 0,0E+00 neue Füllung 50 300 9,2 0,3 0.003 1,0E-05 55 300 9,6 0.4 0,004 1,3E-05

75 300 10,9 0,3 0,003 1,0E-05 80 300 11,1 0,2 0,002 6,7E-06 85 300 0,2 11,3 0,002 6,7E-06 90 300 0,2 11,5 0,002 6,7E-06 95 300 11,7 0,2 0.002 6.7E-06 300 0,2 100 11,9 0,002 6,7E-06 105 300 12,1 0,2 0,002 6,7E-06

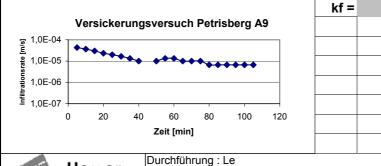
0,4

0,3

0,3

0,004

0,003


0,003

1,3E-05

1,0E-05

1,0E-05

6,7E-06

10,0

10,3

10,6

Endwert

Projekt-Nr..: 3601

Tel: 0 65 01 - 9 93 80 Fax: 0 65 01 - 9 93 81

60

65

70

300

300

300

Unterschrift:

Anlage : 4.1.7

Hever Gmb

		Do	oppelring	-Infiltrome	eter		
Projekt:	Untersuchung	en zur Infiltratio	n - Trier Petri	sberg	Projekt-Nr.:	3601	
Datum:	09.10.2001				-		
		-					
Aufschluß:	A10 - BSch		Versuchsfläcl	ne [m uGOK]: 0).7		
Durchmesser		- 28 cm	70.000.0.000		Bodenart 4022:	U, t, s, f-mg	
	äußerer Ring:				Bodengruppe 18		
Einschlagtiefe	•	8 cm			Bewuchs:	Gras	
Auffüllhöhe:		6 cm			Wurzeln:	wenige	
Bezugspunkt:		3,3 cm				Seite 1 /	
Zoit + [min]	dt [aga]	Ablacung [am]	reale Al	senkung	Infiltrationsrate		
Zeit, t [min]	dt [sec]	Ablesung [cm]	[cm]	[m]	[m/s]	Bemerkung	
0	0	3,3					
5	300	3,3	0	0	0,0E+00		
10	300	3,3	0	0	0,0E+00		
15	300	3,3	0	0	0,0E+00		
20	300	3,4	0,1	0,001	3,3E-06		
25	300	3,4	0	0	0,0E+00		
30	300	3,4	0	0	0,0E+00		
974	56640	4,8	1,4	0,014	2,5E-07	2001-10-10	
1159	11100	5,0	0,2	0,002	1,8E-07		
1214	3300	5,0	0	0	0,0E+00		
				kf =	1,8E-07	Endwert	
	Versickerung	sversuch Petri	sberg A10				
<u>È</u>							
1,0E-05 -	•						
1,0E-06 -		•	•				
= 1,0E-07 +	500	0 1000	1500				
		Zeit [min]					
		Durchführung :	· I o \//i			Projekt-Nr: 3601	
	Heyer Gmbl	+	. Le, vvi			Projekt-Nr 300 r	
Tel (0.05.01	0.02.00	Unterschrift :				Anlage : 4.1.8	
Tel: 0 65 01 · Fax: 0 65 01 ·						-9-:	
eMail : heyer.umv		1					

Versickerungsversuch mittels **Doppelring-Infiltrometer** Projekt: Untersuchungen zur Infiltration - Trier Petrisberg Projekt-Nr.: 3601 Datum: 11.10.2001 Aufschluß: B1 - HSch Versuchsfläche [m uGOK]: 0,1 Durchmesser innerer Ring: 30 cm Bodenart 4022: U, s, t, h' Durchmesser äußerer Ring: 55 cm Bodengruppe 18196: UM/TM 6 <u>cm</u> Acker, Maisanbau Einschlagtiefe: Bewuchs: < 20% Auffüllhöhe: 9 cm Wurzeln: Bezugspunkt: 2,6 cm Seite 1 / reale Absenkung Infiltrationsrate Ablesung Zeit, t [min] dt [sec] Bemerkung [cm] [cm] [m] [m/s] 0 0 2,6 5 300 2,6 0 0 0,0E+00 10 300 2,6 0 0 0,0E+00 0 15 300 2,6 0 0,0E+00 20 300 2,6 0 0 0,0E+00 25 300 2,6 0 0 0,0E+00 30 300 2,6 0 0 0,0E+00 157 7620 2,6 0 0 0,0E+00 0 0 278 7260 2,6 0,0E+00 < 1E-07 kf = < 1E-07 theoretischer Maximalwert Versickerungsversuch Petrisberg B1 1,0E-04 1,0E-05 1,0E-07 50 100 150 200 250 300 Zeit [min] Durchführung : Wi Projekt-Nr..: 3601 Heyer Gmb Anlage : 4.1.9 Unterschrift: Tel: 0 65 01 - 9 93 80 Fax: 0 65 01 - 9 93 81 eMail : heyer.umwelt@t-online.de

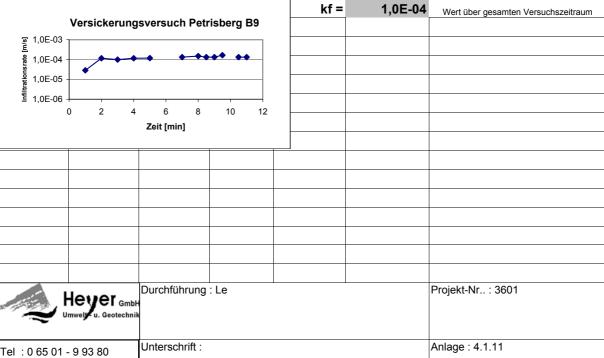
	Proiekt:	Untersuchungen zur Infiltration - Trier Petrisberg	Proiekt-Nr.:	3601
--	----------	--	--------------	------

Datum: 11.10.2001

Aufschluß: B2 - HSch Versuchsfläche [m uGOK]: 0,4

Durchmesser innerer Ring:28 cmBodenart 4022:U, s, f-mgDurchmesser äußerer Ring:54 cmBodengruppe 18196:[UM]Einschlagtiefe:5 cmBewuchs:Wiese, Bäume

Auffüllhöhe: 8 cm Wurzeln: < 10%


Bezugspunkt:		7,9 cm				
						Seite 1 / 2
Zeit, t [min]	dt [sec]	Ablesung [cm]	reale Ab	senkung [m]	Infiltrationsrate [m/s]	Bemerkung
0	0	7,9				
1	60	9,4	1,5	0,015	2,5E-04	
38	2220	4,9				neue Füllung
39	60	5,3	0,4	0,004	6,7E-05	
40	60	5,6	0,3	0,003	5,0E-05	
41	60	6	0,4	0,004	6,7E-05	
42	60	6,4	0,4	0,004	6,7E-05	
43	60	6,8	0,4	0,004	6,7E-05	
44	60	7	0,2	0,002	3,3E-05	
45	60	7,3	0,3	0,003	5,0E-05	
46	60	7,7	0,4	0,004	6,7E-05	
47	60	8	0,3	0,003	5,0E-05	
48	60	8,4	0,4	0,004	6,7E-05	
49	60	8,6	0,2	0,002	3,3E-05	
50	60	9	0,4	0,004	6,7E-05	
51	60	9,3	0,3	0,003	5,0E-05	
55	240	4,4				neue Füllung
56	60	4,6	0,2	0,002	3,3E-05	
57	60	4,9	0,3	0,003	5,0E-05	
58	60	5,3	0,4	0,004	6,7E-05	
59	60	5,6	0,3	0,003	5,0E-05	
60	60	5,9	0,3	0,003	5,0E-05	
61	60	6,3	0,4	0,004	6,7E-05	
62	60	6,6	0,3	0,003	5,0E-05	
63	60	6,9	0,3	0,003	5,0E-05	
64	60	7,2	0,3	0,003	5,0E-05	
65	60	7,5	0,3	0,003	5,0E-05	
66	60	7,8	0,3	0,003	5,0E-05	
67	60	8,2	0,4	0,004	6,7E-05	
68	60	8,5	0,3	0,003	5,0E-05	
69	60	8,8	0,3	0,003	5,0E-05	
70	60	9,0	0,2	0,002		
71	60	9,3	0,3	0,003	5,0E-05	
iesamt letzte	960		4,9	0,049	5,1E-05	
üllung			,	kf =	5,1E-05	
H um	EVET GmbH well u. Geotechnik	Durchführung :	Hy, Wi			Projekt-Nr : 3601
Tel : 0 65 01 - 9		Unterschrift :				Anlage : 4.1.10

Fax: 0 65 01 - 9 93 81 eMail: heyer.umwelt@t-online.de

Versickerungsversuch mittels **Doppelring-Infiltrometer** Untersuchungen zur Infiltration - Trier Petrisberg 3601 Projekt: Projekt-Nr.: Datum: 11.10.2001 Aufschluß: B2 - HSch Versuchsfläche [m uGOK]: 0,4 U, s, f-mg Durchmesser innerer Ring: 28 cm Bodenart 4022: Durchmesser äußerer Ring: 54 cm Bodengruppe 18196: [UM] Einschlagtiefe: 5 cm Bewuchs: Wiese, Bäume Auffüllhöhe: 8 cm Wurzeln: < 10% Bezugspunkt: 7,9 cm Seite 2 / 2 reale Absenkung Ablesung Infiltrationsrate Zeit, t [min] dt [sec] Bemerkung [cm] [m/s] [cm] [m] Versickerungsversuch Petrisberg B2 1,0E-03 1,0E-04 1,0E-05 1,0E-06 0 10 20 30 40 60 70 80 Zeit [min] Durchführung : Hy, Wi Projekt-Nr..: 3601 Hever Gmbi Unterschrift: Anlage : 4.1.10 Tel: 0 65 01 - 9 93 80 Fax: 0 65 01 - 9 93 81 eMail : heyer.umwelt@t-online.de

3601 Projekt: Untersuchungen zur Infiltration - Trier Petrisberg Projekt-Nr.: Datum: 13.10.2001 Versuchsfläche [m uGOK]: 1,70 Aufschluß: B9 - BSch Durchmesser innerer Ring: 30 cm Bodenart 4022: G, s, u', x' Durchmesser äußerer Ring: 55 cm Bodengruppe 18196: GW/GU Bewuchs: Einschlagtiefe: 8 cm Gras Auffüllhöhe: 7 cm Wurzeln: wenige Bezugspunkt: Seite 1 /

Total A Postul	-14 F T	Ablesung	reale Al	osenkung	Infiltrationsrate	Para diaman
Zeit, t [min]	dt [sec]	[cm]	[cm]	[m]	[m/s]	Bemerkung
0	0	2,7				
1	70	2,9	0,2	0,002	2,9E-05	
2	60	3,6	0,7	0,007	1,2E-04	
3	60	4,2	0,6	0,006	1,0E-04	
4	60	4,9	0,7	0,007	1,2E-04	
5	67	5,7	0,8	0,008	1,2E-04	
6	60	1,1				neue Füllung
7	60	1,9	0,8	0,008	1,3E-04	
8	60	2,8	0,9	0,009	1,5E-04	
8,5	30	3,2	0,4	0,004	1,3E-04	
9	30	3,6	0,4	0,004	1,3E-04	
9,5	30	4,1	0,5	0,005	1,7E-04	
10	30	4,6	0	0		
10,5	30	5,0	0,4	0,004	1,3E-04	
11	30	5,4	0,4	0,004	1,3E-04	
Gesamt	677			0,068	1,0E-04	

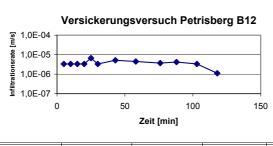
Fax: 0 65 01 - 9 93 81 eMail: heyer.umwelt@t-online.de

3601 Projekt: Untersuchungen zur Infiltration - Trier Petrisberg Projekt-Nr.:

Datum: 10.10.2001

Aufschluß: Versuchsfläche [m uGOK]: 0,05 B11 - HSch

Durchmesser innerer Ring: 30 cm Bodenart 4022: f-mS, u, t', f-mg'


Durchmesser äußerer Ring: 55 cm Bodengruppe 18196: SU/UL Einschlagtiefe: Bewuchs: Wiese 5 cm Auffüllhöhe: 8 cm Wurzeln: vorhanden

Bezugspunkt: 6,9 cm

Bezugspunkt:	•	6,9 cm		Seite 1 /		
Zeit, t [min]	dt [sec]	Ablesung [cm]	reale Al [cm]	osenkung [m]	Infiltrationsrate [m/s]	Bemerkung
1	0	6,9				
5	240	7,3	0,4	0,004	1,7E-05	
10	300	7,7	0,4	0,004	1,3E-05	
15	300	8,1	0,4	0,004	1,3E-05	
20	300	8,5	0,4	0,004	1,3E-05	
25	300	8,9	0,4	0,004	1,3E-05	
30	300	9,2	0,3	0,003	1,0E-05	
35	300	9,4	0,2	0,002	6,7E-06	
40	300	9,6	0,2	0,002	6,7E-06	
45	300	9,8	0,2	0,002	6,7E-06	
50	300	10,1	0,3	0,003	1,0E-05	
55	300	10,3	0,2	0,002	6,7E-06	
60	300	10,6	0,3	0,003	1,0E-05	
65	300	11,0	0,4	0,004	1,3E-05	
70	300	11,2	0,2	0,002	6,7E-06	
85	900	5,5				neue Füllung
90	300	5,7	0,2	0,002	6,7E-06	
95	300	6,1	0,4	0,004	1,3E-05	
110	900	7,3	1,2	0,012	1,3E-05	
120	600	7,8	0,5	0,005	8,3E-06	
135	900	8,9	1,1	0,011	1,2E-05	
150	900	10,2	1,3	0,013	1,4E-05	
esamt					1,1E-05	
				kf =	1,1E-05	Wert über gesamten Versuchszeitrau
1,0E-04 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Versicke	erungsversuch Petrisbe	rg B11	•		
0	20 40	60 80 100 Zeit [min]		160		Projekt-Nr: 3601
	CVCI _{GmbH} welte u. Geotechnik	·	11y, vvi			
Tel: 0 65 01 - 9 93 80 Unterschrift:						Anlage : 4.1.12

31.10.2001

Versickerungsversuch mittels **Doppelring-Infiltrometer** Projekt: Untersuchungen zur Infiltration - Trier Petrisberg Projekt-Nr.: 3601 Datum: 10.10.2001 Aufschluß: B12 - HSch Versuchsfläche [m uGOK]: 0,10 Durchmesser innerer Ring: Bodenart 4022: U, s, g', t', h 30 cm Bodengruppe 18196: UL/TL Durchmesser äußerer Ring: 55 cm Wiese 6 <u>cm</u> Einschlagtiefe: Bewuchs: Auffüllhöhe: 8 cm Wurzeln: vorhanden Bezugspunkt: 4,4 cm Seite 1 / reale Absenkung Infiltrationsrate Ablesung Zeit, t [min] dt [sec] Bemerkung [cm] [cm] [m] [m/s] 0 0 4,4 5 300 4,5 0,1 0,001 3,3E-06 10 300 4,6 0,1 0,001 3,3E-06 0,001 15 300 4,7 0,1 3,3E-06 20 300 4,8 0,1 0,001 3,3E-06 25 300 5,0 0,2 0,002 6,7E-06 30 300 5,1 0,1 0,001 3,3E-06 43 780 5,5 0,4 0,004 5,1E-06 900 0,004 58 5,9 0,4 4,4E-06 1080 76 6,3 0,4 0,004 3,7E-06 88 720 6,6 0,3 0,003 4,2E-06 103 900 0,3 0,003 6,9 3,3E-06 118 900 7,0 0,1 0,001 1,1E-06 0 900 7,0 133 0 7980 0,026 3,3E-06 Gesamt kf = 3,3E-06 Wert über gesamten Versuchszeitraum Versickerungsversuch Petrisberg B12 了 1,0E-04

Projekt-Nr..: 3601

Hever GmbH Umwely u. Geotechnik

Durchführung: Hy, Le

Tel: 0 65 01 - 9 93 80 Fax: 0 65 01 - 9 93 81

eMail: heyer.umwelt@t-online.de

Unterschrift:

Anlage : 4.1.13

31.10.2001

Projekt: Untersuchungen zur Infiltration - Trier Petrisberg Projekt-Nr.: **3601**

Datum: 11.10.2001

Aufschluß: B13 - HSch Versuchsfläche [m uGOK]: 0,05

Durchmesser innerer Ring: 30 cm Bodenart 4022: U, f-ms, h
Durchmesser äußerer Ring: 55 cm Bodengruppe 18196: OH/UL

Einschlagtiefe: 5 cm Bewuchs: junger Laubbaumbestand
Auffüllhöhe: 9 cm Wurzeln: vorhanden

Auffüllhöhe:	9 cm Wurzeln:					vorhanden	
Bezugspunkt:		5,3 cm					
			reale Al	osenkung		Seite 1 /	
Zeit, t [min]	dt [sec]	Ablesung [cm]	[cm]	[m]	Infiltrationsrate [m/s]	Bemerkung	
0	0	5,3					
5	300	6,3	1	0,01	3,3E-05		
10	300		0,8		2,7E-05		
15	300	7,9	0,8		2,7E-05		
20	300					neue Füllung	
25	300		0,8	0,008	2,7E-05		
30	300		0,8		2,7E-05		
35	300		0,6		2,0E-05		
40	300	6,1	0,6	0,006	2,0E-05		
45	300	6,7	0,6		2,0E-05		
50	300		0,5		1,7E-05		
55	300		0,6		2,0E-05		
Gesamt		·	,	,	2,4E-05		
					,		
		1		kf =	2,4E-05	Wert über gesamten Versuchszeitraum	
,	Versickerung	sversuch Petr	isberg B13		,	<u> </u>	
ਊ 1,0E-03 ⊤				1			
1,0E-03 - 1,0E-04 - 1,0E-06 - 1,0E-05 - 1,0E-05 - 1,0E-06 - 1,0E-0	<u> </u>			-			
투 1,0E-05 —				-			
≝ 1,0E-06 +		1 1	1	1			
0	10 20		50	60			
		Zeit [min]					
		Durchführung	: Wi			Projekt-Nr: 3601	
E PRINCE DE LA PRI	1 eyer _{Gmb⊦}		••			-,,-	
Un	nwelt u. Geotechnik	1					
T. L. 0.07.0:	0.00.00	Unterschrift:				Anlage : 4.1.14	
Tel: 0 65 01 -	9 93 80						

Tel: 0 65 01 - 9 93 80 Fax: 0 65 01 - 9 93 81

Untersuchungen zur Infiltration - Trier Petrisberg 3601 Projekt: Projekt-Nr.:

Datum: 13.10.2001

Aufschluß: B14 - BSch Versuchsfläche [m uGOK]: 2,00

 U, \overline{s}, t' Durchmesser innerer Ring: 30 cm Bodenart 4022: Durchmesser äußerer Ring: 53,5 cm Bodengruppe 18196: UM Einschlagtiefe: Bewuchs: Wiese 6 cm

Auffüllhöhe:		10,5 cm			Wurzeln:	wenige
Bezugspunkt:		0,6 cm				Seite 1 /
Zeit, t [min]	dt [sec]	Ablesung	1	senkung	Infiltrationsrate	Bemerkung
		[cm]	[cm]	[m]	[m/s]	
0,0	0	0,6				
0,5	30	0,7	0,1	0,001	3,3E-05	
1,0	30	0,8	0,1	0,001	3,3E-05	
1,5	30	0,8	0	0	0,0E+00	
2	30	0,8	0	0	0,0E+00	
3	60	0,8	0	0	0,0E+00	
4	60	0,8	0	0	0,0E+00	
5	60	0,8	0	0	0,0E+00	
10	300	0,8	0	0	0,0E+00	
15	300	0,8	0	0	0,0E+00	
30	900	0,8	0	0	0,0E+00	
90	3600	1,0	0,2	0,002	5,6E-07	
120	1800	1,0	0	0	0,0E+00	
150	1800	1,2	0,2	0,002	1,1E-06	
401	15060	2,3	1,1	0,011	7,3E-07	
Gesamt	23460			0,015	6,4E-07	
				kf =	6,4E-07	Mittalwart 45 bis 404 Missutan
				KI -	0,42-01	Mittelwert 15 bis 401 Minuten
Ve	rsickerungsv	ersuch Petris	berg B14			
1,0E-04 militrations are 1,0E-05 militration 1,0E-06 militration 1,0E-07	₩					
# 1,0E-05						
월 1,0E-06		****				
5 1,0E-07 ↓	5.0 40	15.0	20.0 25.0			
0,0	5,0 10	,0 15,0 Zeit [min]	20,0 25,0			
H	EVE GmbH welf u. Geotechnik	Durchführung	Le			Projekt-Nr : 3601
Tel : 0 65 01 - 9	9 93 80	Unterschrift :				Anlage : 4.1.15
Fax : 0 65 01 - 9						
eMail : heyer.umwe						
· · · · · · · · · · · · · · · · · · ·					-	

Versickerungsversuch mittels **Doppelring-Infiltrometer** Projekt: Untersuchungen zur Infiltration - Trier Petrisberg Projekt-Nr.: 3601 Datum: 13.10.2001 Aufschluß: B15 - BSch Versuchsfläche [m uGOK]: 2,00 Durchmesser innerer Ring: 30 cm Bodenart 4022: $U, \overline{s}, \overline{g}, x, t$ Bodengruppe 18196: [UM/TM] Durchmesser äußerer Ring: 55 cm 7 <u>cm</u> Wiese Einschlagtiefe: Bewuchs: Auffüllhöhe: 10 cm Wurzeln: keine Bezugspunkt: 2,6 cm Seite 1 / reale Absenkung Infiltrationsrate Ablesung Zeit, t [min] dt [sec] Bemerkung [cm] [cm] [m] [m/s] 0 0 2,6 1 60 2,6 0 0 0,0E+00 2 60 2,6 0 0 0,0E+00 3 0 60 2,6 0 0,0E+00 4 60 2,6 0 0 0,0E+00 5 60 2,6 0 0,0E+00 10 300 2,6 0 0 0,0E+00 15 300 2,6 0 0 0,0E+00 30 900 0 0 2,6 0,0E+00 1800 60 2,8 0,2 0,002 1,1E-06 88 1680 2,9 0,1 0,001 6,0E-07 346 15480 0,014 9,0E-07 4,3 1,4 Gesamt 20760 0,017 8,2E-07 kf = 8,2E-07 Wert über gesamten Versuchszeitraum Versickerungsversuch Petrisberg B15 **☞** 1,0E-04 1,0E-05 1,0E-06 1,0E-07 Zeit [min] Durchführung : Le Projekt-Nr..: 3601 Heyer Gmb

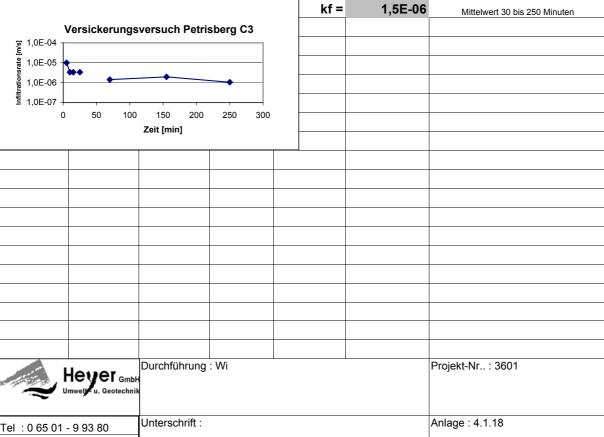
Tel : 0 65 01 - 9 93 80 Fax : 0 65 01 - 9 93 81 eMail : heyer.umwelt@t-online.de Unterschrift:

Anlage : 4.1.16

Versickerungsversuch mittels **Doppelring-Infiltrometer** Projekt: Untersuchungen zur Infiltration - Trier Petrisberg Projekt-Nr.: 3601 Datum: 12.10.2001 Versuchsfläche [m uGOK]: 0,10 Aufschluß: C1 - HSch Durchmesser innerer Ring: 30 cm Bodenart 4022: U, fs, m-gg' Durchmesser äußerer Ring: 55 cm Bodengruppe 18196: UM Einschlagtiefe: Wiese 5 cm Bewuchs: 10 cm Auffüllhöhe: Wurzeln: kaum Bezugspunkt: 4,0 cm Seite 1 / reale Absenkung Infiltrationsrate Ablesung Zeit, t [min] dt [sec] Bemerkung [cm] [cm] [m] [m/s] 0 0 4,0 5 300 0,1 0,001 3,3E-06 10 300 4,1 0 0 0,0E+00 0 0 15 300 4,1 0,0E+00 20 300 4,1 0 0 0,0E+00 63 2580 4,5 0,4 0,004 1,6E-06 Gesamt 3780 0,005 1,3E-06 kf = 1,3E-06 Wert über gesamten Versuchszeitraum Versickerungsversuch Petrisberg C1 ரு 1,0E-04 1,0E-05 1,0E-06 1,0E-07 20 40 60 80 Zeit [min] Durchführung : Wi Projekt-Nr..: 3601 Heyer Gmb Anlage : 4.1.17 Unterschrift: Tel: 0 65 01 - 9 93 80 Fax: 0 65 01 - 9 93 81 eMail : heyer.umwelt@t-online.de

Versickerungsversuch mittels Doppelring-Infiltrometer Untersuchungen zur Infiltration - Trier Petrisberg Projekt-Nr.: 3601 12.10.2001

Aufschluß: C3 - HSch Versuchsfläche [m uGOK]: 0,15


Projekt:

Datum:

Durchmesser innerer Ring: 30 cm Bodenart 4022: U, f-ms, fg', t', h' Durchmesser äußerer Ring: <u>55 cm</u> Bodengruppe 18196: UL/TL Einschlagtiefe: Bewuchs: Weide 5 cm Auffüllhöhe: 8 cm Wurzeln: wenige Bezugspunkt: 5,0 cm

Seite 1

			Seite 1 /			
Zeit, t [min]	dt [sec]	Ablesung	reale Absenkung Infiltrations		Infiltrationsrate	Bemerkung
Zeit, t [iiiiii]	ut [Sec]	[cm]	[cm]	[m]	[m/s]	Demerkung
0	0	5,0				unterhalb des Oberbodens
5	300	5,3	0,3	0,003	1,0E-05	
10	300	5,4	0,1	0,001	3,3E-06	
15	300	5,5	0,1	0,001	3,3E-06	
20	300	5,5	0	0	0,0E+00	
25	300	5,6	0,1	0,001	3,3E-06	
30	300	5,6	0,0	0	0,0E+00	
35	300	5,6	0	0	0,0E+00	
70	2100	5,9	0,3	0,003	1,4E-06	
155	5100	6,9	1,0	0,010	2,0E-06	
250	5700	7,5	0,6	0,006	1,1E-06	
Gesamt	13500			0,02	1,5E-06	

Fax: 0 65 01 - 9 93 81

31.10.2001

		Do	ppelring	-Infiltrome	eter	
Projekt:	Untersuchung	en zur Infiltratio	n - Trier Petri	sberg	Projekt-Nr.:	3601
Datum:	12.10.2001				•	-
		-				
Aufschluß:	C4 - HSch		Versuchsfläc			
Durchmesser		30 cm			Bodenart 4022:	U, s, m-gg
	äußerer Ring:				Bodengruppe 18	
Einschlagtiefe	_	6 cm			Bewuchs:	Weide
Auffüllhöhe:		7 cm			Wurzeln:	wenige
Bezugspunkt:		7,7 cm/ 4,9 cm				0 11 11
			reale Ab	osenkung	Infiltrationsrate	Seite 1 /
Zeit, t [min]	dt [sec]	Ablesung [cm]	[cm]	[m]	[m/s]	Bemerkung
0	0	7,7				
1	60		0,5	0,005	8,3E-05	
2	60		0,6	0,006	1,0E-04	
3			0,4	0,004	6,7E-05	
4	60		0,6	0,006	1,0E-04	
0	0	4,9	0,0	0,000	1,02 04	neue Füllung
1	60		0.7	0.007	1,2E-04	nede Fullung
			0,7	0,007		
2	60		0,5	0,005	8,3E-05	
3			0,4	0,004	6,7E-05	
4	60		0,7	0,007	1,2E-04	
5			0,5	0,005	8,3E-05	
6	60	8,1	0,4	0,004	6,7E-05	
7	60	8,6	0,5	0,005	8,3E-05	
8	60	9,1	0,5	0,005	8,3E-05	
9	60	9,5	0,4	0,004	6,7E-05	
10	60	9,9	0,4	0,004	6,7E-05	
				kf =	6,7E-05	Endwert
4.05.00	Versickerungs	versuch Petris	sberg C4			
7,0E-03 T	44.4	****				
1,0E-05						
1,0E-03 1,0E-04 1,0E-05 1,0E-06 1,0E-07 1,0E-0						
1,0E-07 ↓		10 15				
0	5	10 15 Zeit [min]	20 25			
		2011 [11111]				
	•	Durchführung :	Wi			Projekt-Nr: 3601
	leyer _{Gmbl}	-				•
U	mwelt u. Geotechni	1				
_		Unterschrift:				Anlage : 4.1.19
Tel: 0 65 01 - Fax: 0 65 01 -		Sittorooniiit .				
eMail: hever.umw		-				

Projekt: Untersuchungen zur Infiltration - Trier Petrisberg Projekt-Nr.: 3601

Datum: 09:30 11.10.2001 Uhrzeit:

Aufschluß: A4 - RKS

> 11/4 " Rohrdurchmesser: h1 = 1,000 m

h2 = 0.998 m

Bohrsohle: 1,00 m Bodenart 4022: U, fs, t' Pegel: 1,00 m Bodengruppe 18196: UM

								Seite 1 / 1
t	[min]	dt [sec]	WS unter MP [mm]	h [m]	dH [m] (reale Abs.)	h = (h1+h2)/2	Infiltrations- rate [m/s]	Bemerkung
	0	0	0	1,000				
	1	60	1	0,999	0,001	1,000	1,5E-07	
	3	120	1	0,999	0,000	0,999	0,0E+00	
	5	120	2	0,998	0,001	0,999	7,6E-08	
	10	300	2	0,998	0,000	0,998	0,0E+00	
	15	300	2	0,998	0,000	0,998	0,0E+00	
	20	300	2	0,998	0,000	0,998	0,0E+00	
	25	300	2	0,998	0,000	0,998	0,0E+00	
	30	300	2	0,998	0,000	0,998	0,0E+00	
	40	600	2	0,998	0,000	0,998	0,0E+00	
	50	600	2	0,998	0,000	0,998	0,0E+00	
	60	600	2	0,998	0,000	0,998	0,0E+00	
	75	900	2	0,998	0,000	0,998	0,0E+00	
	90	900	2	0,998	0,000	0,998	0,0E+00	
		5400			0,002	0,998	3,4E-09	
						kf=	3,4E-09	Wert über den gesamten Versuchszeitraum
		Varsicka	rungsversuch	Patrishara A	<i>1</i> _1			
[s/u	1,00E-06		- I angoversuon	- Cirioborg A				
infiltrationsrate [m/s]	1,00E-07							
onsr	1,00E-08							
Itrati								
重	1,00E-09	0 20	40	60 8	0 100			
			Zeit [m					
			Durchführung	1:		Projekt-Nr:	3601	
E PAR	, t	lever GmbH mwely u. Geotechnik		•			,	
_		mwei y u. Geotechnik						
Tol :	0 6E 04	0.02.00	Unterschrift :			Anlage : 4.2	.1	
		- 9 93 80 - 9 93 81			_			
		welt@t-online.de						

Projekt: Untersuchungen zur Infiltration - Trier Petrisberg Projekt-Nr.: **3601**

Datum: 11.10.2001 Uhrzeit: 11:05

Aufschluß: A4 - RKS

Rohrdurchmesser: $1\frac{1}{4}$ " h1 = 4,000 m

h2 = 1,000 m

 Bohrsohle:
 3,60 m
 Bodenart 4022:
 G, s, u

 Pegel:
 4,00 m
 Bodengruppe 18196:
 GW/GU

							Seite 1 / 1
t [min]	dt [sec]	WS unter MP [mm]	h [m]	dH [m] (reale Abs.)	h = (h1+h2)/2	Infiltrations- rate [m/s]	Bemerkung
0	0	0	4,000				
1	60	90	3,910	0,090	3,955	3,4E-06	
2	60	200	3,800	0,110	3,855	4,3E-06	
3	60	310	3,690	0,110	3,745	4,4E-06	
4	60	400	3,600	0,090	3,645	3,7E-06	
5	60	460	3,540	0,060	3,570	2,5E-06	
6	60	590	3,410	0,130	3,475	5,7E-06	
7	60	710	3,290	0,120	3,350	5,4E-06	
8	60	830	3,170	0,120	3,230	5,6E-06	
9	60	950	3,050	0,120	3,110	5,8E-06	
10	60	1080	2,920	0,130	2,985	6,6E-06	
12	120	1250	2,750	0,170	2,835	4,5E-06	
14	120	1430	2,570	0,180	2,660	5,1E-06	
16	120	1570	2,430	0,140	2,500	4,2E-06	
18	120	1690	2,310	0,120	2,370	3,8E-06	
20	120	1830	2,170	0,140	2,240	4,7E-06	
25	300	2060	1,940	0,230	2,055	3,4E-06	
30	300	2290	1,710	0,230	1,825	3,8E-06	
35	300	2440	1,560	0,150	1,635	2,8E-06	
40	300	2560	1,440	0,120	1,500	2,4E-06	
45	300	2660	1,340	0,100	1,390	2,2E-06	
50	300	2720	1,280	0,060	1,310	1,4E-06	
55	300	2780	1,220	0,060	1,250	1,5E-06	
60	300	2830	1,170	0,050	1,195	1,3E-06	
75	900	2930	1,070	0,100	1,120	9,0E-07	
90	900	3000	1,000	0,070	1,035	6,8E-07	
	Varsicka	rungsversuch Pet	rishara A4-2				
1,0E-04 T	Versicke	Tungsversuch Fet	insperg A4-2		kf=	6,8E-07	Endwert
1,0E-05	*****						
1,0E-04 1,0E-05 1,0E-07 1,0E-07	, ,		, , ,	•			
E 0	10 20 3	30 40 50 Zeit [min]	60 70 80	90 100			
						Droiokt Nr.	2604
	eyer _{Gmbl} wely u. Geotechnik	Durchführung				Projekt-Nr:	3001
: 0 65 01 -		Unterschrift :				Anlage : 4.2.	2

Projekt: Untersuchungen zur Infiltration - Trier Petrisberg Projekt-Nr.: **3601**

Datum: 11.10.2001 Uhrzeit: 12:40

Aufschluß: A8 - RKS

Rohrdurchmesser: $1\frac{1}{4}$ " h1 = 4,000 m

h2 = 1,760 m

 Bohrsohle:
 4,00 m
 Bodenart 4022:
 U, t', s

 Pegel:
 4,00 m
 Bodengruppe 18196:
 GT

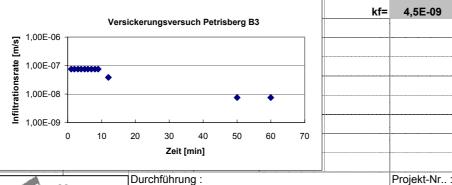
Seite 1 / 1

t [min]	dt [sec]	WS unter MP [mm]	h [m]	dH [m] (reale Abs.)	h = (h1+h2)/2	Infiltrations- rate [m/s]	Bemerkung
0	0	0	4,000				
1	60	70	3,930	0,070	3,965	2,7E-06	
2	60	150	3,850	0,080	3,890	3,1E-06	
3	60	220	3,780	0,070	3,815	2,8E-06	
4	60	280	3,720	0,060	3,750	2,4E-06	
5	60	360	3,640	0,080	3,680	3,3E-06	
6	60	440	3,560	0,080	3,600	3,4E-06	
7	60	530	3,470	0,090	3,515	3,9E-06	
8	60	640	3,360	0,110	3,415	4,9E-06	
9	60	750	3,250	0,110	3,305	5,0E-06	
10	60	810	3,190	0,060	3,220	2,8E-06	
12	120	940	3,060	0,130	3,125	3,1E-06	
14	120	1020	2,980	0,080	3,020	2,0E-06	
16	120	1090	2,910	0,070	2,945	1,8E-06	
18	120	1160	2,840	0,070	2,875	1,8E-06	
20	120	1240	2,760	0,080	2,800	2,2E-06	
25	300	1440	2,560	0,200	2,660	2,3E-06	
30	300	1620	2,380	0,180	2,470	2,2E-06	
40	600	1910	2,090	0,290	2,235	2,0E-06	
50	600	2100	1,900	0,190	1,995	1,4E-06	
60	600	2240	1,760	0,140	1,830	1,2E-06	
2 1,0E-04	Versi	ckerungsversuc	n Petrisberg A8		kf=	1,2E-06	Endwert
1,0E-04 1,0E-05 1,0E-06 1,0E-07	••••	•		•			
	0 10	20 30 Zeit [n	40 50 nin]	60 70			
H Um	EVE GmbH welf u. Geotechnik	Durchführung	:		Projekt-Nr:	3601	
l: 0 65 01 - x: 0 65 01 - ail: heyer.umw	- 9 93 80	Unterschrift:				Anlage : 4.2.3	3

Projekt: Untersuchungen zur Infiltration - Trier Petrisberg Projekt-Nr.: 3601

Datum: 12.10.2001 Uhrzeit: 09:15

Aufschluß: B3 - RKS


> Rohrdurchmesser: 1¼" h1 = 2,000 m

h2 = 1,988 m

Bodenart 4022: Bohrsohle: 1,00 m fS, ms', fg', u' Pegel: 2,00 m Bodengruppe 18196: SU

Seite 1 / 1

t [min]	dt [sec]	WS unter MP [mm]	h [m]	dH [m] (reale Abs.)	h = (h1+h2)/2	Infiltrations-	Bemerkung
		[mm]		Aus.)		rate [m/s]	
0	0	0	2,000				
1	60	1	1,999	0,001	2,000	7,6E-08	
2	60	2	1,998	0,001	1,999	7,6E-08	
3	60	3	1,997	0,001	1,998	7,6E-08	
4	60	4	1,996	0,001	1,997	7,6E-08	
5	60	5	1,995	0,001	1,996	7,6E-08	
6	60	6	1,994	0,001	1,995	7,6E-08	
7	60	7	1,993	0,001	1,994	7,6E-08	
8	60	8	1,992	0,001	1,993	7,6E-08	
9	60	9	1,991	0,001	1,992	7,6E-08	
10	60	9	1,991	0,000	1,991	0,0E+00	
12	120	10	1,990	0,001	1,991	3,8E-08	
14	120	10	1,990	0,000	1,990	0,0E+00	
16	120	10	1,990	0,000	1,990	0,0E+00	
18	120	10	1,990	0,000	1,990	0,0E+00	
20	120	10	1,990	0,000	1,990	0,0E+00	
25	300	10	1,990	0,000	1,990	0,0E+00	
30	300	10	1,990	0,000	1,990	0,0E+00	
40	600	10	1,990	0,000	1,990	0,0E+00	
50	600	11	1,989	0,001	1,990	7,6E-09	
60	600	12	1,988	0,001	1,989	7,6E-09	
	3060			0,003	1,990	4,5E-09	

Projekt-Nr..: 3601

Tel: 0 65 01 - 9 93 80 Fax: 0 65 01 - 9 93 81 eMail : heyer.umwelt@t-online.de

Heyer Gmb Umwely u. Geotechni

Unterschrift:

Anlage : 4.2.4

31.10.2001

Mittelwert 10 bis 60 Minuten

Untersuchungen zur Infiltration - Trier Petrisberg Projekt-Nr.: **3601**

Datum: <u>11.10.2001</u> Uhrzeit: <u>13:50</u>

Aufschluß: B4 - RKS

Projekt:

Rohrdurchmesser: $1\frac{1}{4}$ " h1 = 2,000 m

h2 = 1,020 m

 Bohrsohle:
 1,60 m
 Bodenart 4022:
 mG, s, gg'

 Pegel:
 2,00 m
 Bodengruppe 18196:
 GW

Seite 1 / 1

				Seite 1 / 1			
t [min]	dt [sec]	WS unter MP [mm]	h [m]	dH [m] (reale Abs.)	h = (h1+h2)/2	Infiltrations- rate [m/s]	Bemerkung
0	0	0	2,000				
1	60	25	1,975	0,025	1,988	1,9E-06	
2	60	50	1,950	0,025	1,963	1,9E-06	
3	60	90	1,910	0,040	1,930	3,1E-06	
4	60	170	1,830	0,080	1,870	6,5E-06	
5	60	200	1,800	0,030	1,815	2,5E-06	
6	60	200	1,800	0,000	1,800	0,0E+00	
7	60	200	1,800	0,000	1,800	0,0E+00	
8	60	200	1,800	0,000	1,800	0,0E+00	
9	60	210	1,790	0,010	1,795	8,4E-07	
10	60	220	1,780	0,010	1,785	8,5E-07	
12	120	280	1,720	0,060	1,750	2,6E-06	-
14	120	330	1,670	0,050	1,695	2,2E-06	-
16	120	380	1,620	0,050	1,645	2,3E-06	
18	120	420	1,580	0,040	1,600	1,9E-06	
20	120	450	1,550	0,030	1,565	1,4E-06	
25	300	540	1,460	0,090	1,505	1,8E-06	
30	300	630	1,370	0,090	1,415	1,9E-06	
40	600	760	1,240	0,130	1,305	1,5E-06	
50	600	880	1,120	0,120	1,180	1,5E-06	
60	600	980	1,020	0,100	1,070	1,4E-06	
					1.5-	4.45.00	
T	Versi	ckerungsversuc	h Petrisberg B4	ı	kf=	1,4E-06	Endwert
1,00E-04 1,00E-05 1,00E-07 1,00E-07							
1,00E-05	<u>*************************************</u>						
1,00E-06	** ****	**	+ +	→			
1,00E-07							
0	10	20 30	40 50	60 70			
		Zeit [mi	n]				
Ц	ALIAT .	Durchführung	ı:		Projekt-Nr:	3601	
Um	ever Gmbl						
~	,						
el : 0 65 01	- 9 93 80	Unterschrift:				Anlage : 4.2.	5
ax: 0 65 01							
Mail : heyer.umv	velt@t-online.de						

Projekt: Untersuchungen zur Infiltration - Trier Petrisberg Projekt-Nr.: 3601

Datum: 16:55 11.10.2001 Uhrzeit:

Aufschluß: B5 - RKS

> 11/4 " Rohrdurchmesser: h1 = 2,000 m

h2 = 0,060 m

Bohrsohle: 2,00 m Bodenart 4022: mS, gs', fg' Pegel: 2.00 m Bodengruppe 18196:

Pegel:	2,00 m		Bodengruppe	e 18196:	SW		
							Seite 1 / 1
t [min]	dt [sec]	WS unter MP [mm]	h [m]	dH [m] (reale Abs.)	h = (h1+h2)/2	Infiltrations- rate [m/s]	Bemerkung
(0	0	2,000				
	1 60	700	1,300	0,700	1,650	6,4E-05	
	2 60	940	1,060	0,240	1,180	3,1E-05	
3	60	1020	0,980	0,080	1,020	1,2E-05	
4	60	1260	0,740	0,240	0,860	4,2E-05	
	60	1420	0,580	0,160	0,660	3,7E-05	
6	60	1550	0,450	0,130	0,515	3,8E-05	
7	60	1670	0,330	0,120	0,390	4,7E-05	
8	60	1740	0,260	0,070	0,295	3,6E-05	
ę	60	1820	0,180	0,080	0,220	5,5E-05	
10	60	1870	0,130	0,050	0,155	4,9E-05	
12	120	1940	0,060	0,070	0,095	5,6E-05	
Gesamt	720			1,940	1,030	2,4E-05	
					kf=	2,4E-05	Wert über gesamten Versuchszeitraum
Infiltrationsrate [m/s] 1,0E-04 1,0E-05 1,0E-06		4 6 Zeit [m	8 10 in]	12 14			
Tel : 0 65 0	Heyer GmbH Umwely u. Geotechnik	Durchführung Unterschrift :	J :			Projekt-Nr:	
Fax : 0 65 0						-	

Projekt: Untersuchungen zur Infiltration - Trier Petrisberg Projekt-Nr.: **3601**

Datum: 11.10.2001 Uhrzeit: 15:45

Aufschluß: B6 - RKS

Rohrdurchmesser: $1\frac{1}{4}$ " h1 = 2,000 m

h2 = 1,140 m

 Bohrsohle:
 1,40 m
 Bodenart 4022:
 fG, s, u'

 Pegel:
 2,00 m
 Bodengruppe 18196:
 SU

Seite 1 / 1

[min]	dt [sec]	WS unter MP [mm]	h [m]	dH [m] (reale Abs.)	h = (h1+h2)/2	Infiltrations- rate [m/s]	Bemerkung
0	0	0	2,000				
1	60	780	1,220	0,780	1,610	7,3E-05	
2	60	790	1,210	0,010	1,215	1,2E-06	
3	60	790	1,210	0,000	1,210	0,0E+00	
4	60	790	1,210	0,000	1,210	0,0E+00	
5	60	790	1,210	0,000	1,210	0,0E+00	
6	60	790	1,210	0,000	1,210	0,0E+00	
7	60	790	1,210	0,000	1,210	0,0E+00	
8	60	800	1,200	0,010	1,205	1,3E-06	
9	60	800	1,200	0,000	1,200	0,0E+00	
10	60	810	1,190	0,010	1,195	1,3E-06	
12	120	810	1,190	0,000	1,190	0,0E+00	
14	120	810	1,190	0,000	1,190	0,0E+00	
16	120	820	1,180	0,010	1,185	6,4E-07	
18	120	820	1,180	0,000	1,180	0,0E+00	
20	120	820	1,180	0,000	1,180	0,0E+00	
25	300	830	1,170	0,010	1,175	2,6E-07	
30	300	830	1,170	0,000	1,170	0,0E+00	
40	600	840	1,160	0,010	1,165	1,3E-07	
50	600	850	1,150	0,010	1,155	1,3E-07	
60	600	860	1,140	0,010	1,145	1,3E-07	
					kf=	1,3E-07	Endwert
1,00E-04 - 1,00E-05 - 1,00E-06 -	Versi	ckerungsversuch	Petrisberg B6				
1,00E-07 -		•	•	-			
1,00E-08 -) 10	20 30	40 50	60 70			
•	5 10	Zeit [mi		00 70			
Hever Gmbh Umwely u. Geotechnii						Projekt-Nr:	3601
0 65 01 -	9 93 80	Unterschrift:				Anlage : 4.2.7	7

Fax: 0 65 01 - 9 93 81

Projekt: Untersuchungen zur Infiltration - Trier Petrisberg Projekt-Nr.: 3601

Datum: 17:50 11.10.2001 Uhrzeit:

Aufschluß: B7 - RKS

> 11/4 " Rohrdurchmesser: h1 = 5,000 m

h2 = 0,060 m

Bodenart 4022: Bohrsohle: 5,00 m mG, fg, S Pegel: 5,00 m Bodengruppe 18196: GW

					Seite 1 / 1		
t [min]	dt [sec]	WS unter MP [mm]	h [m]	dH [m] (reale Abs.)	h = (h1+h2)/2	Infiltrations- rate [m/s]	Bemerkung
0	0	0	5,000				
1	60	3320	1,680	3,320	3,340	1,5E-04	
2	60	3710	1,290	0,390	1,485	4,0E-05	
3	60	4050	0,950	0,340	1,120	4,6E-05	
4	60	4270	0,730	0,220	0,840	4,0E-05	
5	60	4480	0,520	0,210	0,625	5,1E-05	
6	60	4610	0,390	0,130	0,455	4,3E-05	
7	60	4750	0,250	0,140	0,320	6,6E-05	
8	60	4840	0,160	0,090	0,205	6,6E-05	
9	60	4910	0,090	0,070	0,125	8,5E-05	
10	60	4940	0,060	0,030	0,075	6,0E-05	
					kf=	6,0E-05	Endwert
Infiltrationsrate [m/s] [m/s]		ckerungsversuc	h Petrisberg B7				
m/s] 1,00E-	04					••••	
ofiltra D	•	•		•			
± 1,00E-	05	4 6	8	10 12		***************************************	
	0 2	Zeit [ı		10 12			
F un	lever _{Gmbh} mwely u. Geotechnil					Projekt-Nr:	3601
Tel : 0 65 01 Fax : 0 65 01	- 9 93 81	Unterschrift :				Anlage : 4.2.	8
/lail: heyer.um	welt@t-online.de						

Projekt: Untersuchungen zur Infiltration - Trier Petrisberg Projekt-Nr.: 3601

Datum: 10:25 12.10.2001 Uhrzeit:

B8 - RKS Aufschluß:

> 11/4 " Rohrdurchmesser: h1 = 2,000 m

h2 = 2,000 m

Bohrsohle: 1,00 m Bodenart 4022: A (u, t, s, g', x') Pegel: 2,00 m Bodengruppe 18196: [UM]

Seite 1 / 1									
t [min]	dt [sec]	WS unter MP [mm]	h [m]	dH [m] (reale Abs.)	h = (h1+h2)/2	Infiltrations- rate [m/s]	Bemerkung		
0	0	0	2,000						
1	60	0	2,000	0,000	2,000	0,0E+00			
2	60	0	2,000	0,000	2,000	0,0E+00			
3	60	0	2,000	0,000	2,000	0,0E+00			
4	60	0	2,000	0,000	2,000	0,0E+00			
5	60	0	2,000	0,000	2,000	0,0E+00			
6	60	0	2,000	0,000	2,000	0,0E+00			
7	60	0	2,000	0,000	2,000	0,0E+00			
8	60	0	2,000	0,000	2,000	0,0E+00			
9	60	0	2,000	0,000	2,000	0,0E+00			
10	60	0	2,000	0,000	2,000	0,0E+00			
15	300	0	2,000	0,000	2,000	0,0E+00			
20	300	0	2,000	0,000	2,000	0,0E+00			
25	300	0	2,000	0,000	2,000	0,0E+00			
30	300	0	2,000	0,000	2,000	0,0E+00			
40	600	0	2,000	0,000	2,000	0,0E+00			
50	600	0	2,000	0,000	2,000	0,0E+00			
60	600	0	2,000	0,000	2,000	0,0E+00			
	***************************************					< E-09			
	Versio	ckerungsversucl	h Petrisberg B8		kf=	< E-09	theoretischer Maximalwert		
<u>ඉ</u> 1,00E-04									
1,00E-05 1,00E-05 1,00E-07 1,00E-07					***************************************				
2 1,00E-06									
ig 1,00E-07									
1,00E-08			1	1					
_ 1,002 00	0 10	20 30 Zeit [m	40 50 nin]	60 70					
					<u> </u>				
	leyer _{GmbH}	Durchführung	j :		Projekt-Nr:	3601			
el: 0 65 01 ax: 0 65 01 Mail: heyer.um		Unterschrift:				Anlage : 4.2.9)		

Projekt: Untersuchungen zur Infiltration - Trier Petrisberg Projekt-Nr.: **3601**

Datum: 12.10.2001 Uhrzeit: 12:00

Aufschluß: B10 - RKS

Rohrdurchmesser: $1\frac{1}{4}$ " h1 = 5,000 m

h2 = 0,015 m

 Bohrsohle:
 5,00 m
 Bodenart 4022:
 mS, gs, g

 Pegel:
 5,00 m
 Bodengruppe 18196:
 SW

						Seite 1 / 1		
t [mi	in]	dt [sec]	WS unter MP [mm]	h [m]	dH [m] (reale Abs.)	h = (h1+h2)/2	Infiltrations- rate [m/s]	Bemerkung
	0	0	0	5,000				
	0,5	30	3100	1,900	3,100	3,450	2,7E-04	
	1	30	3300	1,700	0,200	1,800	3,4E-05	
	2	60	3750	1,250	0,450	1,475	4,6E-05	
	3	60	3980	1,020	0,230	1,135	3,1E-05	
	4	60	4140	0,860	0,160	0,940	2,6E-05	
	5	60	4320	0,680	0,180	0,770	3,5E-05	
	6	60	4450	0,550	0,130	0,615	3,2E-05	
	7	60	4540	0,460	0,090	0,505	2,7E-05	
	8	60	4630	0,370	0,090	0,415	3,3E-05	
	9	60	4710	0,290	0,080	0,330	3,7E-05	
	10	60	4770	0,230	0,060	0,260	3,5E-05	
	12	120	4860	0,140	0,090	0,185	3,7E-05	
	14	120	4930	0,070	0,070	0,105	5,0E-05	
	16	120	4970	0,030	0,040	0,050	6,0E-05	
	18	120	4980	0,020	0,010	0,025	3,0E-05	
	19	60	4985	0,015	0,005	0,017	4,3E-05	
Gesam	ıt	1140			4,985	2,508	1,6E-05	
						kf=	1,6E-05	Wert über den gesamten Versuch
	0E-03 7	Vers	ickerungsversuc	ch Petrisberg B1	10			
onsra	0E-04 - 0E-05 -			*****	•			
	_{0E-06}]	1	1	ı				
	C	5	10 Zeit [m		20 25			
	F Un	leyer _{GmbH}		J:			Projekt-Nr:	
Fax : 0	65 01	- 9 93 80 - 9 93 81 welt@t-online.de	Unterschrift:				Anlage : 4.2.1	0

Projekt: Untersuchungen zur Infiltration - Trier Petrisberg Projekt-Nr.: **3601**

Datum: 16.10.2001 Uhrzeit: 11:20

Aufschluß: B14 - RKS

Rohrdurchmesser: $1\frac{1}{4}$ " h1 = 4,000 m

h2 = 0,005 m

Bohrsohle: 4,00 m Bodenart 4022:

Pegel: 4,00 m Bodengruppe 18196: SW

Seite 1 / 1

Seite 1 / 1										
t [min]	dt [sec]	WS unter MP [mm]	h [m]	dH [m] (reale Abs.)	h = (h1+h2)/2	Infiltrations- rate [m/s]	Bemerkung			
0	0	0	4,000							
1	60	240	3,760	0,240	3,880	9,4E-06				
2	60	500	3,500	0,260	3,630	1,1E-05				
3	60	760	3,240	0,260	3,370	1,2E-05				
4	60	1010	2,990	0,250	3,115	1,2E-05				
5	60	1240	2,760	0,230	2,875	1,2E-05				
6	60	1470	2,530	0,230	2,645	1,3E-05				
7	60	1700	2,300	0,230	2,415	1,4E-05				
8	60	1900	2,100	0,200	2,200	1,4E-05				
9	60	2130	1,870	0,230	1,985	1,8E-05				
10	60	2310	1,690	0,180	1,780	1,5E-05				
12	120	2660	1,340	0,350	1,515	1,7E-05				
14	120	2990	1,010	0,330	1,175	2,1E-05				
16	120	3240	0,760	0,250	0,885	2,1E-05				
18	120	3470	0,530	0,230	0,645	2,7E-05				
20	120	3600	0,400	0,130	0,465	2,1E-05				
22	120	3690	0,310	0,090	0,355	1,9E-05				
24	120	3760	0,240	0,070	0,275	1,9E-05				
26	120	3820	0,180	0,060	0,210	2,2E-05				
28	120	3870	0,130	0,050	0,155	2,4E-05				
30	120	3910	0,090	0,040	0,110	2,7E-05				
32	120	3950	0,050	0,040	0,070	4,3E-05				
34	120	3980	0,020	0,030	0,035	6,5E-05				
36	120	3995	0,005	0,015	0,013	9,1E-05				
Sesamt	2160			3,995	2,003	8,4E-06				
		!-!	ah Datriahana D	14						
2 1,0E-03	vers	ickerungsversu	on Petrisberg B	14	kf=	8,4E-06	Wert über den gesamten Versuch			
_										
mations (m/s) [m/s] [m/s] [m/s] [m/s] [m/s]	*******	****	++++							
1,0E-06		10 20		40						
	0	Zeit [r								
		_	_			Desire M	0004			
	eyer GmbH vely u. Geotechnik	Durchführung	į:			Projekt-Nr:	3601			
el : 0 65 01 -	9 93 80	Unterschrift :				Anlage : 4.2.	11			
ax : 0 65 01 -										
M - 11 - 1	- 11 Ot 11 1 -	1								

Versickerungsversuch im Bohrloch

Auffüllversuch Untersuchungen zur Infiltration - Trier Petrisberg Projekt-Nr.: 3601 Projekt: Datum: 16.10.2001 Uhrzeit: 12:10 Aufschluß: B15 - RKS Rohrdurchmesser: 1¼" h1 = 3,000 mh2 = 0,000 mBodenart 4022: Bohrsohle: 4,0 m 4,0 m Bodengruppe 18196: SW Pegel: Seite 1 / 1 Infiltrations-WS unter MP dH [m] (reale t [min] dt [sec] h [m] h = (h1+h2)/2Bemerkung [mm] rate [m/s] 0 0 0 3,00 0,05 3 6,0E-03 3000 0,00 3,000 1,500 kf= 6,0E-03 Minimalwert Versickerungsversuch Petrisberg B15 1,00E-02 1,00E-03 1,00E-04 1,00E-05 1,00E-02 0,2 0,4 0,6 1,0 Zeit [min] ırchführung : Projekt-Nr..: 3601 Hever Gmbl Unterschrift : Anlage : 4.2.12 Tel: 0 65 01 - 9 93 80 Fax: 0 65 01 - 9 93 81

Versickerungsversuch im Bohrloch

Auffüllversuch

Projekt-Nr.: 3601 Projekt: Untersuchungen zur Infiltration - Trier Petrisberg

Datum: 12.10.2001 13:40 Uhrzeit:

Aufschluß: C2 - RKS

11/4 " h1 = 2,000 m Rohrdurchmesser:

h2 = 1,999 m

Bodenart 4022: Bohrsohle: 1,00 m U, s, t, g' Pegel: 2,00 m Bodengruppe 18196: UM

							Seite 1 / 1		
t	[min]	dt [sec]	WS unter MP [mm]	h [m]	dH [m] (reale Abs.)	h = (h1+h2)/2	Infiltrations- rate [m/s]	Bemerkung	
	0	0	0	2,000					
	2	120	0	2,000	0,000	2,000	0,0E+00		
	4	120	0	2,000	0,000	2,000	0,0E+00		
	6	120	0	2,000	0,000	2,000	0,0E+00		
	8	120	0	2,000	0,000	2,000	0,0E+00		
	10	120	1	1,999	0,001	2,000	3,8E-08		
	15	300	1	1,999	0,000	1,999	0,0E+00		
	20	300	1	1,999	0,000	1,999	0,0E+00		
	25	300	1	1,999	0,000	1,999	0,0E+00		
	30	300	1	1,999	0,000	1,999	0,0E+00		
	40	600	1	1,999	0,000	1,999	0,0E+00		
	50	600	1	1,999	0,000	1,999	0,0E+00		
	60	600	1	1,999	0,000	1,999	0,0E+00		
Gesa	ımt	3600			0,001	1,999	1,3E-09		
								Wert über den gesamten	
					kf=	1,3E-09	Versuchszeitraum		
_	1,0E-04 -	Versickerungsversuch Petrisberg C2							
s/ш]	1,0E-05 -								
rate									
itions	1,0E-06 -								
Infiltrationsrate [m/s]	1,0E-07 -	•							
=	1,0E-08 -								
	(0 10 20 30 40 50 60 70 Zeit [min]							
		Zok (illin)							
	4	Durchführung					Projekt-Nr.: 3601		
Heyer GmbH Umwelly u. Geotechnik							Projekt-Nr :	3001	
Tel :	Tel : 0 65 01 - 9 93 80 Unterschrift :						Anlage : 4.2.	13	
Fax :	0 65 01	- 9 93 81							
eMail :	heyer.um	nwelt@t-online.de							